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Abstract 
 

In recent years, Minimally Invasive Surgery (MIS) has transformed the general practice 

of surgery. The benefits are well documented and include reduced trauma, hospitalisation 

and comorbidity leading to faster recovery. Despite the benefits, current instrument 

design and visualisation make MIS challenging. The clinical benefits of Image Guided 

Intervention (IGI) are well established for procedures such as neurosurgery, where tissue 

motion is manageable. IGI provides visualisation below the tissue surface allowing the 

surgeon to avoid critical structures and identify target anatomy. In minimally invasive 

cardiac, gastrointestinal, or abdominal surgery, significant tissue deformation prohibits 

accurate registration of pre- and intra-operative data. In this thesis, computer vision and 

machine learning techniques are explored to estimate 3D tissue deformation for 

improved intra-operative navigation and visualisation.  
 

The main focus of this thesis is concerned with modelling 3D tissue deformation from a 

mobile intra-operative device. Two methods are proposed to improve region tracking 

using machine learning techniques. The first is based on tracking-by-detection. A set of 

region descriptors is systematically selected, which are robust to deformation. This set is 

fused in a probabilistic framework to combine multiple cues and boost tracking. In the 

second method, a context specific technique is developed. It is capable of learning the 

information that best distinguishes a region from its surroundings. The information is 

adaptively updated online to learn a representation that is robust to deformation.  
 

3D tissue models are built sequentially from a moving imaging device using 

Simultaneous Localisation And Mapping (SLAM). To this end, an optical biopsy 

mapping system based on SLAM is proposed. The system registers multi-modal, intra-

operative images to a common coordinate space. The resulting Augmented Reality (AR) 

visualisation aids biopsy site retargeting and navigation. A second SLAM based system 

is proposed for dynamic view expansion. By using the localised camera position, a 

photorealistic tissue model is augmented onto the laparoscopic video. This expands the 

camera’s field-of-view to aid navigation and reduce disorientation. Significantly, in this 

thesis, a re-formulation of the static SLAM problem is proposed. This is called Motion 

Compensated SLAM (MC-SLAM) which is capable of accurate localisation and 

dynamic mapping in periodically deforming environments. The work is validated using 

simulated, phantom, ex vivo and in vivo data. Finally, the future research directions and 

potential improvements to the techniques presented in this thesis are outlined. 



 3

Acknowledgements 
 

I would like to thank my advisor, Professor Guang-Zhong Yang, for the opportunity to 

pursue a PhD in Medical Imaging. He has pushed me to achieve more than I ever thought 

possible and given me confidence in my research abilities. His vision, clinical and 

technical knowledge have shaped my work and his enthusiasm for research will remain 

with me. 

 

I would also like to thank Andrew Davison. His work has been a constant influence 

throughout my PhD, and I consider myself fortunate to have had the opportunity to 

collaborate with him. I am extremely grateful for his practical advice, help, insight and 

patience, especially at the outset of my studies when I was first finding my way.  

 

Throughout my PhD research, I have had the pleasure of working with very talented 

people who have offered me their help and advice on countless occasions. I would like to 

thank Dan S, Matina, Selen, Mirna, Dave, Marco, George, Dan E, Fani and Adrian. I 

have been lucky enough to work with some excellent clinicians including, Jim C, Dan L 

and Mike. 

 

I have also been lucky enough to share my PhD experience with the friends I have made 

along the way. They made dealing with the ups and downs of research easier, and for 

that, I am incredibly grateful to: Andy D, Andy H, Doug, Salman, James,  Rachel, 

Valentina, Julien, Alex, Johannes, Chris, Toby,  Ka Wai, Vincent, Jim P, Neil and to 

everyone who has attended the Thursday meeting. I want to thank all my friends from 

London, Bristol and Reigate for always asking when I will finish and get a real job. I 

owe a special thanks to Cath for her patients and support.  

 

I would not have pursued a PhD had it not been for the support of my family. My brother 

Andy has always been there to support me and given me the self belief to complete my 

PhD. I want to thank my mum Ricia for encouraging me to pursue what makes me happy 

and Andrew for his constant support. I would also like to thank my Dad and Christine for 

their support and advice.  



 4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my family



 5

 

Contents 
 

CHAPTER 1................................................................................................................................. 18 

INTRODUCTION ....................................................................................................................... 18 

CHAPTER 2................................................................................................................................. 24 

IMAGE GUIDED INTERVENTION AND MINIMALLY INVASIVE SURGERY ............ 24 

2.1 IMAGE GUIDED INTERVENTION ........................................................................................ 25 

2.1.1 Pre-operative Planning ..................................................................................... 27 

2.1.2 Intra-operative Guidance .................................................................................. 28 

2.1.2.1 Intra-operative Imaging Techniques ............................................................................... 28 

2.1.2.2 Instrument Localisation .................................................................................................. 29 

2.1.2.3 Registration ..................................................................................................................... 31 

2.1.2.4 Visualisation and Augmented Reality ............................................................................. 32 

2.1.3 Post-Operative Assessment ............................................................................... 32 

2.2 CLINICAL AND TECHNICAL CONSIDERATIONS OF IGI FOR MIS ........................................ 33 

2.2.1 Clinical Considerations of IGI .......................................................................... 33 

2.2.2 Key Technical Challenges ................................................................................. 35 

2.2.2.1 Causes of Tissue Deformation ........................................................................................ 35 

2.2.2.2 In situ Tissue Deformation Recovery ............................................................................. 36 

2.2.2.3 Non-Rigid Registration ................................................................................................... 40 

2.2.2.4 Intra-operative Instrument Tracking ............................................................................... 40 

2.2.2.5 Visualisation and Augmented Reality ............................................................................. 41 

2.3 VISION BASED TECHNIQUES FOR SOFT-TISSUE DEFORMATION RECOVERY ..................... 42 

2.3.1 Recovering Soft-Tissue 3D Structure ................................................................ 44 

2.3.2 Temporal Tissue Tracking and Modelling ........................................................ 48 

2.3.2.1 Deformable Tissue Tracking ........................................................................................... 48 

2.3.2.2 Tissue Deformation Modelling ....................................................................................... 54 

2.3.3 Structure and Camera Motion Estimation ........................................................ 56 

2.3.3.1 Structure-from-Motion .................................................................................................... 56 

2.3.3.2 Simultaneous Localisation and Mapping (SLAM).......................................................... 61 

2.4 CONCLUSION .................................................................................................................... 65 

CHAPTER 3................................................................................................................................. 67 

A PROBABILISTIC FRAMEWORK FOR TRACKING DEFORMABLE TISSUE .......... 67 

3.1 TISSUE TRACKING ............................................................................................................ 67 

3.1.1 Region Descriptors and Matching .................................................................... 67 

3.1.2 Geodesic-Intensity Histogram (GIH) ................................................................ 69 

3.1.3 Scale Invariant Feature Transform (SIFT) ....................................................... 69 

3.1.4 Gradient Location-Orientation Histogram (GLOH) ......................................... 71 

3.1.5 Speeded Up Robust Features (SURF) ............................................................... 71 

3.1.6 Colour Model .................................................................................................... 71 

3.1.7 Colour Constant Colour Indexing (CCCI) ........................................................ 72 

3.1.8 Colour Based Object Recognition (CBOR) ....................................................... 72 

3.1.9 Blur Robust (BR) Colour Ratios ....................................................................... 72 

3.2 DESCRIPTOR SELECTION AND FUSION .............................................................................. 73 

3.2.1 Bayesian Framework for Feature Selection (BFFS) ......................................... 74 

3.2.1.1 BFFS Objective Function ............................................................................................... 77 

3.2.2 Probabilistic Descriptor Fusion for Tissue Tracking ....................................... 78 

3.3 EXPERIMENTS AND RESULTS............................................................................................ 80 

3.3.1 Simulated Experiments ...................................................................................... 82 

3.3.2 In Vivo Experiments .......................................................................................... 86 



 6

3.4 DISCUSSIONS AND CONCLUSION ...................................................................................... 90 

CHAPTER 4................................................................................................................................. 93 

AN ONLINE LEARNING APPROACH TO TISSUE TRACKING ...................................... 93 

4.1 INTRODUCTION ................................................................................................................ 94 

4.2 LEARNING REGION DESCRIPTORS .................................................................................... 95 

4.2.1 Building the Online Tracker ............................................................................. 96 

4.2.1.1 Online Training Data Generation .................................................................................... 98 

4.2.1.2 Synthetic Training Data Generation................................................................................ 98 

4.2.2 Training the Classifier ...................................................................................... 99 

4.2.3 Region Matching ............................................................................................. 102 

4.2.4 Evaluating and Improving Online Tracking Performance .............................. 103 

4.3 MODELLING TISSUE MOTION ......................................................................................... 104 

4.3.1 Extracting Intrinsic Global Tissue Motion...................................................... 105 

4.3.2 Tissue Motion Models ..................................................................................... 106 

4.4 EXPERIMENTS AND RESULTS.......................................................................................... 107 

4.4.1 Simulated Experiments .................................................................................... 109 

4.4.2 In vivo Experiments ......................................................................................... 111 

4.4.2.1 Tissue Deformation....................................................................................................... 111 

4.4.2.2 Occlusion ...................................................................................................................... 114 

4.4.2.3 Scale and Rotation ........................................................................................................ 118 

4.4.2.4 Surgical Smoke ............................................................................................................. 120 

4.4.3 In Vivo Tissue Motion Modelling .................................................................... 121 

4.5 COMPUTATIONAL PERFORMANCE ANALYSIS ................................................................. 123 

4.6 DISCUSSIONS AND CONCLUSIONS .................................................................................. 124 

CHAPTER 5............................................................................................................................... 126 

SIMULTANEOUS LOCALISATION AND MAPPING (SLAM) FOR THE MINIMALLY 

INVASIVE ENVIRONMENT .................................................................................................. 126 

5.1 SIMULTANEOUS LOCALISATION AND MAPPING (SLAM) .............................................. 126 

5.2 SLAM FOR MIS ............................................................................................................. 130 

5.2.1 Extended Kalman Filter (EKF) ....................................................................... 131 

5.2.1.1 EKF State Prediction .................................................................................................... 131 

5.2.1.2 EKF State Update ......................................................................................................... 132 

5.2.2 Extended Kalman Filter for SLAM ................................................................. 133 

5.2.2.1 System initialisation ...................................................................................................... 133 

5.2.2.2 SLAM State Prediction ................................................................................................. 134 

5.2.2.3 SLAM State Update ...................................................................................................... 136 

5.2.3 Feature Measurement ..................................................................................... 137 

5.2.4 Feature Initialisation ...................................................................................... 138 

5.2.5 Honeycomb Artefact Removal ......................................................................... 140 

5.3 EXPERIMENTAL RESULTS ............................................................................................... 141 

5.3.1 In Vivo Experiments ........................................................................................ 141 

5.3.2 Quantitative Validation ................................................................................... 148 

5.3.2.1 Simulated Experiments ................................................................................................. 148 

5.3.2.2 Phantom Experimental Set-up ...................................................................................... 152 

5.3.2.3 Phantom Results ........................................................................................................... 154 

5.4 DISCUSSIONS AND CONCLUSIONS .................................................................................. 159 

CHAPTER 6............................................................................................................................... 160 

APPLICATIONS OF SLAM TO MIS ..................................................................................... 160 

6.1 OPTICAL BIOPSY MAPPING ............................................................................................ 160 

6.1.1 Probe Tracking and Biopsy Site Estimation ................................................... 163 

6.1.2 Global Biopsy Mapping with SLAM ............................................................... 165 

6.1.3 Experimental Set-up ........................................................................................ 167 

6.1.4 Results ............................................................................................................. 168 

6.1.5 Discussion and Conclusions ........................................................................... 172 



 7

6.2 DYNAMIC VIEW EXPANSION .......................................................................................... 173 

6.2.1 Dynamic View Expansion with SLAM ............................................................. 176 

6.2.1.1 Tissue Model ................................................................................................................ 176 

6.2.1.2 Texture Selection .......................................................................................................... 177 

6.2.1.3 Seam Removal .............................................................................................................. 178 

6.2.1.4 Augmented Visualisation Seam Removal ..................................................................... 179 

6.2.2 Experiments and Results ................................................................................. 179 

6.2.3 Discussions and Conclusions .......................................................................... 182 

CHAPTER 7............................................................................................................................... 183 

MOTION COMPENSATED SLAM FOR IMAGE GUIDED SURGERY .......................... 183 

7.1 MODELLING DYNAMIC TISSUE MOTION ........................................................................ 185 

7.1.1 Learning the Periodic Motion Model .............................................................. 186 

7.1.2 MC-SLAM Formulation .................................................................................. 189 

7.1.2.1 Probabilistic Framework ............................................................................................... 189 

7.1.2.2 State Prediction Model .................................................................................................. 190 

7.1.2.3 Measurement Model ..................................................................................................... 191 

7.1.2.4 Feature Initialisation ..................................................................................................... 192 

7.2 EXPERIMENTS AND RESULTS.......................................................................................... 192 

7.2.1 Simulated Experiments .................................................................................... 192 

7.2.2 Ex Vivo Experiments ....................................................................................... 197 

7.2.3 In Vivo Experiments ........................................................................................ 202 

7.3 DISCUSSIONS AND CONCLUSION .................................................................................... 205 

CHAPTER 8............................................................................................................................... 206 

CONCLUSIONS AND FUTURE WORK ............................................................................... 206 

8.1 CONTRIBUTION OF THE THESIS ...................................................................................... 206 

8.2 POTENTIAL FUTURE WORK ............................................................................................ 209 

 

 



 8

List of Figures 
 

Figure 2.1 Overview of the three main stages of IGI for pre-operative planning, intra-

operative guidance and post-operative assessment. The technical 

contribution of this thesis is mainly concerned with intra-operative 

guidance involving 3D tissue deformation recovery, instrument 

sensing/tracking, and intra-operative visualisation, as highlighted in red. ...... 26 

Figure 2.2 Illustration of IGI for cardiac MIS. A laparoscopic image of the cardiac 

surface augmented with a pre-operative model of a vessel visualised as 

Augmented Reality using Inverse Realism [43]. ................................................. 34 

Figure 2.3 Illustration of IGI for hepatic MIS. A laparoscopic image of the liver 

augmented with the model of a tumour (green) and visualised as 

Augmented Reality using Inverse Realism [43] (blue). ...................................... 35 

Figure 2.4 Endoscopic and laparoscopic images illustrating specular highlights, 

tissue-tool occlusion, homogenous surface, repetitive structures, 

saturation and non-linear illumination. (a) Liver and gall bladder, (b) 

heart, (c) liver, (d) oesophagus (using narrow band imaging), (e) bowel 

viewed from the abdominal cavity and (f) bladder viewed from the 

abdominal cavity. .................................................................................................. 37 

Figure 2.5 Intra-operative recovery of 3D tissue geometry. (a-c) Image of a phantom 

liver captured with (a) a laparoscope and (b-c) a MESA-Imaging SR-

3000 Time-of-Flight camera showing the 3D depth map (b) and 

reflectance image (c). (d) Shape from Shading reconstruction from 

monocular endoscopic images [50]. (e) A 2D ultrasound image and (f) a 

dense stereo reconstruction from stereo laparoscopic images [51]. .................. 39 

Figure 2.6 The physical configuration of a laparoscopic camera. (a) Monocular 

optical set-up illustrating an object in 3D projected onto the 2D image 

plane with respect to the camera centre C. (b) Calibration of monocular 

optics showing the principal point and calibration grid. (c) Stereo 

optical set-up with left camera centre C, right camera centre C’ and two 

epipolar lines e and e’. The point M in 3D is projected onto the left and 

right image plane at locations m and m’, respectively. ...................................... 44 

Figure 2.7 Examples of the physical optical and lighting configuration of endoscopes 

and laparoscopes. (a) 30° laparoscope, (b) 0° laparoscope, (c) flexible 

endoscope, (d) stereo laparoscope with two light sources, (e) stereo 

laparoscope with a single light source and (f) the da Vinci robotically 

controlled laparoscope. ......................................................................................... 46 

Figure 2.8 An example of non-linear deformation of the cardiac surface. The lines 

indicate corresponding regions between (a-d) the first frame in a video 

sequence and (e-h) images of the cardiac surface at a four temporal 

positions in the cardiac cycle. ............................................................................... 49 

Figure 2.9 Tissue deformation is caused by the cardiac and respiratory cycles. 

Example signals of the (a) respiratory and (b) cardiac cycles illustrating 

their periodic and quasi-periodic nature............................................................. 55 

Figure 2.10 Illustration of structure and camera motion estimation. Simultaneous 

Localisation And Mapping (left) demonstrating sequential and 

incremental long term mapping with uncertainty estimates, motion 

prediction and updates. Structure-from-Motion (right) showing frame 

to frame pose estimation and global optimisation. ............................................. 58 

Figure 3.1 Flow chart illustrating the six steps in the generation of training data from 

laparoscopic video data. A region detector is applied to each frame of 

the video, regions of interest are detected and descriptors are computed. 

Tracking is performed relative to the first frame and corresponding 

regions in subsequent images are manually defined. ......................................... 73 



 9

Figure 3.2 Flow chart illustrating the use of training data to perform descriptor 

selection with a BFFS framework. The backwards search strategy is 

shown where the process starts with the set of all descriptors and 

iteratively removes the worst performing until the set contains one 

descriptor. .............................................................................................................. 77 

Figure 3.3 Flow chart illustrating the steps in online regions tracking using descriptor 

fusion. In the tracking-by-detection framework a region detector is first 

applied. Image descriptors are computed for the detected regions and 

fused in a NBN to improved tracking performance. .......................................... 79 

Figure 3.4 DAG visualisation of a NBN for descriptor fusion for classifying a region. 

The DAG contains nodes representing descriptors D and classification 

C. The nodes are joined together by directed arcs which represent the 

conditional probability between the nodes. ......................................................... 80 

Figure 3.5 Simulated data. An image, acquired during a laparoscopic 

cholecystectomy illustrating the gall bladder and liver, is textured onto a 

3D deformable mesh. The mesh is deformed with a mixture of 

Gaussians. (a-f) Show the deformed surface used to validate the 

tracking algorithm. ............................................................................................... 81 

Figure 3.6 Simulated data. (a-e) ROC (sensitivity vs. 1-specificity) graphs for 

individual descriptors and fused descriptors F1-F5. The matching 

threshold is varied to obtain the curves. (f) AUC graph generate by 

BFFS selection framework. .................................................................................. 84 

Figure 3.7 Simulated data. (a) Detector repeatability and (b) sensitivity of fused 

descriptors with respect to time. .......................................................................... 85 

Figure 3.8 In vivo data. (a-e) A selection of laparoscopic images collected during a 

laparoscopic cholecystectomy. The images show deformation resulting 

from tissue-tool interaction. (e-f) Show local deformation of a region of 

interest. ................................................................................................................... 87 

Figure 3.9 In vivo data. (a-e) ROC (sensitivity vs. 1-specificity) graphs for descriptors. 

(f) AUC graph generated by BFFS selection framework. .................................. 88 

Figure 3.10 In vivo data. (a) Detector repeatability and (b) sensitivity of fused 

descriptors with respect to time. .......................................................................... 89 

Figure 3.11 (a-d) Laparoscopic footage of tissue deformation resulting from tool 

interaction. The footage was acquired during a robotic assisted lung 

lobectomy procedure. 3D deformation tracking and depth 

reconstruction based on computational stereo. (e-f) Descriptor fusion 

and (g-h) SIFT. SIFT was identified by the BFFS as the most 

discriminative descriptor for this image sequence. ............................................ 91 

Figure 4.1 Specular highlights, non-linear tissue deformation and variation in the 

visual appearance of tissue makes tissue tracking challenging. A 

segment of the liver is shown in (a) with repetitive surface pattern. Non-

linear tissue deformation on the cardiac surface is shown in (b) with 

occlusion caused by specular highlights. Tissue deformation resulting 

from respiration is shown in (c). .......................................................................... 94 

Figure 4.2 A diagrammatic overview of the proposed learning based online tracking 

system. The six steps of the system are shown and illustrate how the 

system learns online from real data, the generation of synthetic data, the 

construction of decision trees and the evaluation and update of the 

classifier. ................................................................................................................ 97 

Figure 4.3. The visual effect of smoke modelling based on Equation (4.1)-(4.3). (a) 

Original image, (b) 0.15s =  , (c) 0.25s =  and (d) 0.4s =  where s  

is variable representing the modelled smoke density. ...................................... 100 

Figure 4.4 Hypothetical example distributions of training data-sets 
t
S (green) and 

f
S (blue) used to create the classifier. (a) Uni-modal distribution with 

low intra-class variance and high inter-class variance, (b) distributions 



 10

with high intra-class variance and high inter-class variance, (c) 

multimodal distributions with low inter-class variance, (d) log likelihood 

ratio of multimodal distribution (c). .................................................................. 103 

Figure 4.5 Quantitative tracking performance for simulated data with the five 

tracking algorithms considered. (a-d) The simulated data is created by 

warping an image taken from a MIS procedure with known ground 

truth deformation characteristics. (e) and (f) Quantitative performance 

evaluation for the five different tracking techniques compared; green – 

online learnt tracker, red – SIFT, dark blue – Lucas Kanade, black – 

mean-shift 1, and light blue – mean-shift 2. ...................................................... 110 

Figure 4.6 Quantitative tracking performance for in vivo deformation sequences. (a-c) 

In vivo cardiac data-set and tracking analysis. (d-f) Second in vivo 

cardiac data-set and tracking analysis, (g-i) Porcine liver data-set and 

tracking analysis. Five trackers are compared; green – the online learnt 

tracker, red – SIFT, dark blue – Lucas Kanade, black – mean-shift 1, 

and light blue – mean-shift 2. ............................................................................. 113 

Figure 4.7 Quantitative tracking performance for in vivo occlusion sequences. (a-c) 

Occlusion sequence one with tracking analysis. (d-f) Occlusion sequence 

two with tracking analysis. (g-i) Occlusion sequence three with tracking 

analysis. Five trackers are compared; green – the online learnt tracker, 

red – SIFT, dark blue – Lucas Kanade, black – mean-shift 1, and light 

blue – mean-shift 2. ............................................................................................. 116 

Figure 4.8 (a) A single region tracked over time showing drift with LK tracking in 

blue and the robustness of proposed approach in green. (b) Illustrates 

the problem of occlusion by a tool. Green – the proposed online learnt 

tracker, red – SIFT. SIFT tracking is not continuous. ..................................... 117 

Figure 4.9 Quantitative tracking performance for in vivo sequences. (a-c) Rotation 

around the optical axis with tracking analysis. (d-f) Surgical smoke 

resulting from diathermy with tracking analysis.  (g-i) Scale change with 

tracking analysis. Five trackers are compared; green – the online learnt 

tracker, red – SIFT, dark blue – Lucas Kanade, black – mean-shift 1 

and light blue – mean-shift 2. ............................................................................. 119 

Figure 4.10 Modelling tissue deformation. (a-c) The extracted components from 

global motion (green) and models (red) and (d-f) corresponding error 

plots (blue). (a) The first ICA component extracted from footage of the 

heart representing the cardiac motion. (b) The second ICA component 

extracted from footage of the heart representing the respiratory motion. 

(c) The first PCA component extracted from footage of the liver 

representing the respiratory motion. ................................................................. 122 

Figure 4.11 The computational requirements of the learning phase of the system 

shown for (a) exhaustive search and (b) optimised search. ............................. 123 

Figure 5.1 An illustration of laparoscopic movement during MIS. The laparoscope is 

inserted through an incision in the abdomen wall to visualise the 

internal organs. The surgeon controls the laparoscope and images are 

displayed on the monitor. The incision-point in the abdomen wall 

creates a pivot point and the fulcrum effect. ..................................................... 130 

Figure 5.2 A schematic of the SLAM framework including feature initialisation, 

camera prediction, measurement model, and state (camera and map) 

update. .................................................................................................................. 130 

Figure 5.3 Honeycomb noise removal from fibrescopic images. (a) Original test image 

captured by fibre bundle, (b) test image after honeycomb removal, (c) 

test image, (d) original image in Fourier domain, (e) band pass filter 

applied in Fourier domain (f) - top close-up of (a) and (f) - bottom close-

up of (b). ............................................................................................................... 142 

Figure 5.4 (a-f) Results from an in vivo experiment with the SLAM framework 

showing the laparoscopic images and the SLAM coordinate system. The 

grey cylinder indicates the current position and pose of the laparoscope 



 11

in the SLAM coordinate system. The position of the map features are 

represented by their elliptical uncertainty. In the laparoscopic images, 

the black boxes indicate the position of features and the red ellipses 

show the uncertainty in the features position. (a) System initialisation, 

laparoscope moves (b) left, (c) right, (d) up, and (e) down. (f) Shows a 

surface model. ...................................................................................................... 144 

Figure 5.5 Results from in vivo experiments with SLAM framework for (a-c) rotation 

around the X, Y, and Z axes and (d-f) translation along the X, Y, and Z 

axis. ....................................................................................................................... 145 

Figure 5.6 Results from a second in vivo experiment with the SLAM framework 

showing the laparoscopic images and the SLAM coordinate system. The 

current position and pose of the laparoscope in the SLAM coordinate 

system is shown by the grey cylinder. The position of the map features 

are represented by their elliptical uncertainty. In the laparoscopic 

images, the black boxes indicate the position of features and the red 

ellipses show the uncertainty in the features position. Features shown in 

blue are not being tracked. ................................................................................. 146 

Figure 5.7 Results for the second in vivo experiments with the SLAM framework for 

(a-c) rotation around the X, Y, and Z axes and (d-f) translation along 

the X, Y, and Z axes. ........................................................................................... 147 

Figure 5.8 Images from simulated data illustrating translation along the X axis (a-b), 

translation along the Z axis (c-d) leading to a change in scale. (e-f) 

Shows rotation around the Z axis. ..................................................................... 149 

Figure 5.9 Quantitative analysis of the laparoscopic camera motion for simulated 

data. The SLAM estimated position is shown in green, and the ground 

truth is shown in red for (a-c) rotation around the X, Y, and Z axes and 

(d-f) translation along the X, Y, and Z axes. ..................................................... 151 

Figure 5.10 Image showing the custom-made optical configuration of the stereo 

fibrescopic system. The optical set-up includes the fibre mount, 

objective lens, and camera. The rigid body, embedded with optical 

markers used for validation, is shown in the top right. A close-up of the 

laparoscope tip is shown in the bottom left. ...................................................... 152 

Figure 5.11 Ground truth map data. (a-b) A CT of the silicon phantom. (c-d) The CT 

is segmented and meshed to create surface models. ......................................... 153 

Figure 5.12 Phantom data. Quantitative analysis of the camera trajectories 

decomposed into individual rotations and X, Y and Z translations. The 

ground truth is shown in red and the SLAM recovered camera position 

is shown in green for the (a-c) rotation around the X, Y, and Z axes and 

(d-f) translation along the X, Y, and Z axes. ..................................................... 155 

Figure 5.13 Phantom Data. (a-d) Example images from the fibrescope. (e-h) The 

SLAM recovered 3D textured surface model and camera position, 

ground truth trajectory (blue) and SLAM estimated camera trajectory 

(green). ................................................................................................................. 156 

Figure 5.14 A comparison of reconstructed 3D surface generated from CT ground 

truth data (a-c) and by SLAM (e-f). .................................................................. 158 

Figure 6.1 (a) A typical endoscopic white light image of the bronchus used for 

navigation, (b) the relative configuration of a confocal fluorescence 

probe when inserted through the instrument channel of a standard 

endoscope, and (c) a typical microconfocal fluorescence image showing 

the microstructure of a sample. ......................................................................... 161 

Figure 6.2 Top - the clinical work-flow of traditional biopsy. Bottom – a potential new 

clinical work-flow that may be facilitated by optical biopsy. .......................... 162 

Figure 6.3 Estimation of the biopsy site via model-based instrument tracking. (a) The 

points on the shaft of the tool are estimated in 3D relative to the camera 

centre C. (b) The orientation and 3D position of the tool are estimated. 

A geometric model is used to extrapolate the position of the tip and infer 

the biopsy site in 3D. ........................................................................................... 164 



 12

Figure 6.4 (a-d) Schematic representation of SLAM’s sequential probabilistic 

mapping updates. The laparoscopic camera’s position c is shown in red. 

An ellipse represents its spatial uncertainty. The tissue is shown in light 

grey. Map features y1, y2, and y3 are represented in dark grey, and the 

biopsy site b is shown in green. (a-d) shows the sequential progression 

where (a) c measures y1 with low uncertainty, (b) c is navigated to a new 

position with growing uncertainty. Features y2 and y3 are measured 

and biopsy b is taken. (c) c is navigated close to y1 and positional 

uncertainty increases. (d) Feature y1 is measured and the estimated 

position of c is improved which results in improved estimate of b as it is 

correlated to c. ..................................................................................................... 166 

Figure 6.5 Analysis of biopsy site number three. (a) The ground truth projected 

position in red, and the estimated position in green for a short section of 

the procedure. (b-c) The ground truth projected position (red) and the 

SLAM estimated position (green) compared in the X and Y axes of the 

images plane. ....................................................................................................... 170 

Figure 6.6 (a-d) Position of  biopsy sites  (green spheres) at different times of the 

procedure. The spheres are 0.2 cm in diameter and appear in different 

sizes when they are projected onto the image from different depths; (e) 

shows the six biopsy sites with corresponding micro-confocal 

fluorescence endoscope images. ......................................................................... 171 

Figure 6.7 A schematic illustration of the Dynamic View Expansion system 

implementation based on the SLAM framework described in the 

previous chapter. ................................................................................................. 174 

Figure 6.8 Left – The physical world coordinate system showing the position of the 

camera relative to the tissue as it is navigated by the surgeon and 

accompanying images from the endoscope. Right – The SLAM 

coordinate system showing the estimated position of the camera and the 

incrementally built SLAM map. The camera has an enlarged field-of-

view enabling dynamic view expansion shown to the right. ............................ 175 

Figure 6.9 (a) Delaunay triangulation of the points in a SLAM map with current 

camera position shown in green. (b) Selected textures for each triangle 

(c) the textured 3D tissue model before seam removal. ................................... 177 

Figure 6.10 A visual comparison of the effect of Poisson texture blending on in vivo 

data. (a) Model without blending. (b) Model with blending. (c) Current 

view augmented with model without blending. (d) Current view 

augmented with model with blending. ............................................................... 180 

Figure 6.11 Five in vivo examples of dynamic view expansion performed during an 

exploration of the abdomen. The current image from the laparoscope is 

highlighted with a white, dashed border. .......................................................... 181 

Figure 7.1 Schematic of MC-SLAM system. Additional steps for dealing with 

dynamic map motion are highlighted in red including; learning the 

periodic motion model, predicting the motion model and predicting 

dynamic motion in the map. ............................................................................... 185 

Figure 7.2 Graphical illustration of respiratory modelling from organ motion. This 

involves: 1) the motion of a region or feature point (of a liver) is tracked 

with respect to time in 3D, 2) the principal axis of motion (a vector 

representing the dominant direction of organ motion) is estimated, 3) 

the periodic motion along this axis is examined, and a respiration model 

is estimated. ......................................................................................................... 186 

Figure 7.3 (a) The X, (b) Y, and (c) Z coordinates of a tracked feature on the surface 

of an in vivo liver, (d) the first, (e) second, and (f) third components 

from PCA. ............................................................................................................ 188 

Figure 7.4 Simulated data. (a) Respiration model; observed data, respiration model, 

and ground truth. (b-d) Laparoscopic position for MC-SLAM (green) 

and ground truth (red). (e-g) Laparoscopic position static SLAM (blue) 

and ground truth (red)........................................................................................ 194 



 13

Figure 7.5 Simulated data for MC-SLAM evaluation at (a) frame zero and (b) frame 

500 illustrating the dynamic map and motion compensated camera 

estimation (green). Static SLAM at (c) frame zero and (d) frame 500 

illustrating the static map and erroneous camera estimation (blue). 

Tracked features are shown using a red boarder and estimated feature 

positions with a yellow border. .......................................................................... 195 

Figure 7.6 Simulated data showing the laparoscopic image (with tracked features) 

and the SLAM coordinate system (with map features and laparoscope 

position). (a-f) Static SLAM system with camera position shown in blue 

and ground truth shown in red. (g-l) MC-SLAM system with camera 

position shown in green and ground truth shown in red. ................................ 196 

Figure 7.7 Custom made mechanical device used to replicate periodic respiration 

during ex vivo experiments. The motion is controlled by a motor, which 

is connected to the cam. The profile of the cam is designed to create an 

asymmetric motion by pushing the shaft away from the centre of the 

cam. The spring holds the shaft in place and maintains contact with the 

cam. A tray is attached to the end of the shaft upon which the tissue is 

fixed. ..................................................................................................................... 197 

Figure 7.8 Ex vivo data. (a) Respiration data showing the observed data, respiration 

model and ground truth. (b-d) Laparoscopic position for MC-SLAM 

(green) and ground truth (red). (e-g) Laparoscopic position static SLAM 

(blue) and ground truth (red). ............................................................................ 200 

Figure 7.9 Ex vivo data. (a-j) Laparoscopic image with associated MC-SLAM map 

and laparoscope camera positions; MC-SLAM (green), static SLAM 

(blue) ground truth (red). (k-o) Illustration of Image Guided Surgery 

with pre-operative data visualised intra-operatively using Inverse 

Realism [43]. (a-b) are images taken from a static camera and illustrate 

the motion of the liver resulting from respiration where (a) is inhale 

position and (b) is exhale position. (c-e) Illustrate combined laparoscope 

and tissue motion. (o) laparoscope motion results in the target moving 

outside the current field-of-view. The dynamic target position is 

estimated relative to the current position of the laparoscope and 

visualised using view expansion described in the previous chapter. ............... 201 

Figure 7.10 In vivo data. (a) Respiration data showing the observed data and 

respiration model. (b-d) Laparoscopic position for MC-SLAM (green). 

(e-g) Laparoscopic position static SLAM (blue) ............................................... 203 

Figure 7.11 In vivo data showing laparoscopic images (a-e) with features tracked in 

the SLAM system. (f-j) The SLAM coordinate system illustrating the 

map features and the MC-SLAM laparoscope estimate in green and the 

static SLAM estimate in blue. (k-o) Illustration of Image Guided 

Surgery with pre-operative data visualised intra-operatively. Using 

Inverse Realism [43]. (k-l) show a static laparoscope and the tissue at (k) 

exhale and (l) inhale position. (m-n) combined laparoscope and tissue 

motion. (o) laparoscope motion results in the target moving outside the 

current field-of-view............................................................................................ 204 

 

 



 14

 

List of Tables 

 
Table 2.1 Summary of methods used in MIS for 3D reconstruction from image data. ......... 47 

Table 2.2 Summary of tissue morphology and structure estimation methods applied 

in MIS. ......................................................................................................................... 56 

Table 3.1 A summary of the region descriptors evaluated in this study. Colour 

descriptors are identified by a ‘C’ prefix. ................................................................. 68 

Table 4.1 In vivo data. Summary of the tracking performance of five algorithms with 

respect to tissue deformation. .................................................................................. 112 

Table 4.2 In vivo data. Summary of the tracking performance of five algorithms with 

respect to occlusion. .................................................................................................. 115 

Table 4.3 In vivo data. Summary of the tracking performance of five algorithms with 

respect to scale, rotation and surgical smoke. ........................................................ 120 

Table 6.1 Average error of biopsy site estimation for the phantom experiment. ................. 169 

Table 7.1 Periodic respiration model parameters for simulated data. .................................. 195 

Table 7.2 Periodic respiration model parameters for ex vivo data. ...................................... 197 

 



 15

 

List of Acronyms 
 

Area Under Curve .......................................................................................... (AUC) 

Augmented Reality ........................................................................................ (AR)  

Bayesian Framework for Feature Selection ................................................... (BFFS) 

Bidirectional Reflectance Distribution Function ........................................... (BRDF) 

Blur Robust .................................................................................................... (BR) 

Blur Robust Colour Based Object Recognition ............................................. (BR-CBOR) 

Blur Robust Colour Constant Colour Indexing ............................................. (BR-CCCI) 

Charge-Coupled Device ................................................................................. (CCD) 

Colour Based Object Recognition ................................................................. (CBOR) 

Colour Constant Colour Indexing .................................................................. (CCCI) 

Colour Cross Correlation ............................................................................... (CCC) 

Colour Differential Invariants ........................................................................ (CDI) 

Colour Gradient Location-Orientation Histogram ......................................... (CGLOH) 

Colour Image Moments ................................................................................. (CMOM) 

Colour Scale Invariant Feature Transform .................................................... (CSIFT) 

Colour Speeded Up Robust Features ............................................................. (CSURF) 

Colour Spin Images ....................................................................................... (CSpin) 

Colour Steerable Filter ................................................................................... (CSF) 

Computer Assisted Surgery ........................................................................... (CAS) 

Computer-Integrated Surgery ........................................................................ (CIS) 

Computed Tomography ................................................................................. (CT) 

Coronary Artery Bypass Graft ....................................................................... (CABG) 

Cross Correlation ........................................................................................... (CC) 

Degrees-of-Freedom ...................................................................................... (DOF) 

Difference Of Gaussian ................................................................................. (DOG) 

Differential Invariants .................................................................................... (DI) 

Directed Acyclic Graph ................................................................................. (DAG) 

Ear, Nose and Throat ..................................................................................... (ENT) 

Efficient Second-order Minimisation ............................................................ (ESM) 

Extend Kalman Filter ..................................................................................... (EKF) 



 16

Field-of-View................................................................................................. (FOV) 

Finite Element Method .................................................................................. (FEM) 

General-Purpose Computing on Graphics Processing Units ......................... (GPGPU) 

Geodesic Intensity Histograms ...................................................................... (GIH) 

Global Positioning System ............................................................................. (GPS) 

Graded Index.................................................................................................. (GRIN) 

Gradient Location-Orientation Histogram ..................................................... (GLOH) 

Graphics Processing Unit ............................................................................... (GPU) 

Image Guided Intervention ............................................................................ (IGI) 

Image Guided Surgery ................................................................................... (IGS)  

Image Moments ............................................................................................. (MOM) 

Independent Component Analysis ................................................................. (ICA) 

Inertia Measurement Unit .............................................................................. (IMU)  

Infrared Light Emitting Diodes ...................................................................... (IRED) 

Intra-operative Computed Tomography ........................................................ (iCT) 

Intra-operative Magnetic Resonance Imaging ............................................... (iMRI) 

Iterative Closest Point .................................................................................... (ICP) 

Left Internal Mammary Artery ...................................................................... (LIMA) 

Left Internal Thoracic Artery ......................................................................... (LITA) 

Levenberg-Marquardt .................................................................................... (LM) 

Light-Emitting Diode ..................................................................................... (LED) 

Lucas Kanade ................................................................................................. (LK) 

Magnetic Resonance Imaging ........................................................................ (MRI) 

Maximally Stable Extremal Regions ............................................................. (MSER) 

Minimally Invasive Direct Coronary Artery Bypass ..................................... (MIDCAB) 

Minimally Invasive Surgery .......................................................................... (MIS) 

Motion Compensated Simultaneous Localisation And Mapping .................. (MC-SLAM) 

Mutual Information ........................................................................................ (MI) 

Natural Orifice Transluminal Endoscopic Surgery ........................................ (NOTES) 

Naive Bayesian Network ............................................................................... (NBN) 

Normalised Cross Correlation ....................................................................... (NCC) 

One-dimensional ............................................................................................ (1D) 

Optical Coherence Tomography .................................................................... (OCT) 

Positron Emission Tomography ..................................................................... (PET) 

Principal Component Analysis ...................................................................... (PCA) 



 17

Radio Frequency ............................................................................................ (RF) 

Radio Frequency Ablation ............................................................................. (RFA) 

Random Sample Consensus ........................................................................... (RANSAC) 

Receiver Operating Characteristic ................................................................. (ROC) 

Red, Green and Blue ...................................................................................... (RGB) 

Scale Invariant Feature Transform................................................................. (SIFT) 

Shape-From-Shading ..................................................................................... (SFS)  

Simultaneous Localisation And Mapping ...................................................... (SLAM) 

Single Photon Emission Tomography ........................................................... (SPET) 

Singular Value Decomposition  ..................................................................... (SVD) 

Speeded Up Robust Features ......................................................................... (SURF) 

Steerable Filter ............................................................................................... (SF) 

Structure-From-Motion .................................................................................. (SFM) 

Sum of Absolute Differences ......................................................................... (SAD) 

Sum of Squared Differences .......................................................................... (SSD) 

Three-dimensional ......................................................................................... (3D) 

Totally Endoscopic Coronary Artery Bypass Graft  ...................................... (TECAB) 

Two-dimensional ........................................................................................... (2D) 

 



 18

 

Chapter 1  
 

 

 

Introduction 
 

 

 

 

 

Over the past two decades, Minimally Invasive Surgery (MIS) has played a major role in 

reshaping the general practice of surgery. It greatly reduces patient trauma leading to 

faster recovery time and reduced hospitalisation and risk of comorbidity. Although the 

benefits of MIS are well documented, the current tools make procedures challenging for 

surgeons and limit what can be achieved. The elongated tools lack tactile feedback, have 

limited degrees of freedom of motion, and suffer from the fulcrum effect. Furthermore, 

the internal organs are visualised using a laparoscopic camera displayed onto a 2D 

monitor. This results in a loss of direct 3D vision, off-axis visualisation, and a limited 

view of the surgical site. Current technologies have reached a glass ceiling in the 

functionality they can provide. The future of MIS depends on ergonomically improved 

instruments combined with effective visualisation. Increasing the current functionality of 

MIS will require combining both pre- and intra-operative imaging and sensing data - 

potentially with the assistance of a surgical robot for enhanced manual dexterity and 

access.   

 

In recent years, Image Guided Intervention (IGI) has demonstrated its clinical potential 

of enhanced visualisation by using pre-operative data to guide intra-operative 

manipulation. Important information such as target anatomies, access routes, and critical 

structures can be defined using pre-operative data. This information is presented intra-

operatively to guide the surgeon, enabling navigation and visualisation beyond the 

exposed tissue surface during surgery. IGI is currently limited to procedures such as 
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neurosurgery and orthopaedics, where tissue deformation is manageable. However, the 

theoretical benefits of IGI are even greater in MIS procedures such as cardiac, 

abdominal, and gastrointestinal surgeries. In these cases, accurate registration of pre- and 

intra-operative data is a significant challenge due to the amount of tissue deformation 

involved. The accurate estimation of the deforming 3D geometry in situ is, therefore, a 

fundamental pre-requisite to enable accurate, robust registration.  

 

During MIS, intra-operative imaging techniques such as Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT), and ultrasound can be used to estimate the 

anatomical structure and temporal deformation. However, their practical use is restricted 

by what is already a very complex operating room setting.   Laparoscopes and 

endoscopes are the standard intra-operative imaging devices used in MIS. It is desirable 

to use these modalities to estimate tissue deformation, but these devices only capture 2D 

information. Consequently, it is necessary to develop 3D reconstruction techniques based 

on computer vision algorithms. This, in itself, is challenging in the presence of tissue 

deformation and camera motion.   

 

During MIS, the laparoscope or endoscope is controlled by the surgeon and used to 

navigate internal cavities toward the target anatomy and around the surgical site. 

Therefore, if these images are to be used to estimate deformation and perform 

registration, the motion of the camera must first be estimated and removed. Simultaneous 

estimation of the motion of the camera and the surrounding 3D structure is a well-studied 

topic in computer vision. Common approaches include Structure-from-Motion and 

Simultaneous Localisation And Mapping (SLAM). These approaches are mainly 

concerned with natural scenery with rigid structures. Deforming environments is a 

challenging research topic, which is further complicated by the requirement of online 

estimation and motion prediction during MIS.   

 

The purpose of this thesis is to investigate image based techniques for estimating the 

spatial structure and temporal deformation of soft-tissue, as well as the pose of the intra-

operative imaging devices used during MIS. Thus, the central aims and objectives of this 

thesis are:  

 

assess the current state-of-the-art vision techniques for tracking tissue deformation 

during MIS;  
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investigate the use of machine learning and context specific information to enhance 

tissue tracking performance; 

 

examine the feasibility of using SLAM based on laparoscopic images to simultaneously 

estimate laparoscope camera motion and 3D tissue morphology;   

 

develop and evaluate a novel vision-based framework for image guided surgery with 

application to multi-modality intra-operative image registration and dynamic view 

expansion;  

 

extend the current SLAM framework for MIS surgical scenes involving dynamic tissue 

deformation.   

 

 

In Chapter 2, the basic concept of IGI is introduced. A brief overview of the key 

components of IGI is provided and the clinical benefits of IGI for MIS are outlined for 

cardiac and hepatic surgery. In this chapter, the technical challenges in delivering IGI for 

MIS are discussed. Following this, a comprehensive literature review of state-of-the-art 

vision algorithms is provided. A particular focus is placed on techniques that are 

potentially suitable for tissue deformation tracking and 3D structural recovery in 

laparoscopic and endoscopic images.   

 

Chapter 3 investigates the application of region tracking for the purpose of estimating 

deformation of the tissue surface.  The use of vision-based algorithms in MIS has 

attracted significant attention in recent years due to its potential of providing in situ 3D 

tissue deformation recovery for intra-operative surgical guidance and robotic navigation. 

However, a direct application of these techniques to MIS has revealed many problems, 

largely due to free-form tissue deformation and varying visual appearances of surgical 

scenes. This chapter evaluates the current state-of-the-art region descriptors in computer 

vision and outlines their respective performance issues when used for deformation 

tracking. A probabilistic framework for selecting the most discriminative descriptors is 

presented and a Bayesian fusion method is used to boost the accuracy and temporal 

persistence of tracked features. The performance of the proposed method is evaluated 
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using both simulated data with known ground truth and in vivo video sequences recorded 

from robotic assisted MIS procedures. 

 

In Chapter 4, a context specific approach to region tracking is presented. The method 

learns region representations online without making assumptions regarding the type of 

image transformations and visual characteristics involved. These representations are 

updated continuously as the tracking progresses. In this chapter, the strength of the 

algorithm is validated with respect to drift, deformation, surgical smoke, occlusion and 

changes in scale and orientation. Decoupling and modelling cardiac and respiratory 

motion during robotic assisted surgery demonstrates the practical value of the method. 

 

Chapter 5 describes a technique for building a global 3D map of the scene whilst 

recovering the camera motion using SLAM. A sequential vision-only approach is 

adopted which models 6 DOF camera movement. Image artefacts resulting from 

fibreoptics are removed with pre-processing. The method has been applied to in vivo 

MIS video sequences and validated using a simulated data-set and phantom data-set with 

CT known ground truth. The results indicate the strength of the proposed algorithm 

under complex reflectance properties of the scene and its potential for integration with 

existing MIS hardware.  

 

Chapter 6 provides two, practical applications of the proposed SLAM framework. The 

first pertains to optical biopsy mapping involving multi-modality image registration and 

mapping to a single coordinate space. This facilitates intra-operative navigation and 

visualisation. A micro-confocal imaging probe is used to obtain point-based optical 

biopsy information. The probe is tracked in the image space to infer the position of the 

biopsy site, which is incorporated into the statistical framework of SLAM. The second 

application investigated in Chapter 6 is dynamic view expansion during MIS. The 

SLAM framework is proposed to temporally register intra-operative images and to create 

a 3D textured model of the soft-tissue. The textured model is augmented to the current 

intra-operative image to extend the effective camera field-of-view for improving spatial 

awareness during navigation thus reducing disorientation. Methods to improve visual 

fidelity with texture selection and blending are proposed.   

 

The effect of tissue deformation on the static SLAM framework is the focus of Chapter 

7. In this chapter, a new formulation of the SLAM framework, with capabilities in 
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dynamic environments is proposed. The method relies on a high level model of periodic 

tissue deformation and explicitly incorporates this knowledge into the framework of 

SLAM. Detailed validation is performed in this chapter and the method is used to 

visualise pre-operative data in realistic MIS settings for IGI.   

 

Finally, Chapter 8 concludes the thesis by outlining possible future research directions 

and challenges for in situ 3D structural recovery. A detailed discussion concerning the 

relative merit and potential drawbacks of the techniques developed in this thesis are 

discussed. 

 

The work presented in this thesis has resulted in the following publications in peer-

reviewed international journals and conference proceedings: 

 

Peter Mountney, Danail Stoyanov, Andrew J. Davison, Guang-Zhong Yang. 

“Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive 

Surgery”.  In proc MICCAI (1) 2006: pp. 347-354 

 

Peter Mountney, Benny P. L. Lo, Surapa Thiemjarus, Danail Stoyanov, Guang-Zhong 

Yang. “A Probabilistic Framework for Tracking Deformable Soft-tissue in Minimally 

Invasive Surgery”. In proc. MICCAI (2) 2007: pp. 34-41 

 

Peter Mountney and Guang-Zhong Yang. "Soft-tissue Tracking for Minimally Invasive 

Surgery: Learning Local Deformation Online". In proc MICCAI (2) 2008: pp. 364-372. 

 

Peter Mountney and Guang-Zhong Yang. “Dynamic View Expansion for Minimally 

Invasive Surgery using Simultaneous Localization And Mapping”. In Proc EMBC 2009: 

pp. 1184-1187 

 

Peter Mountney, Stamatia Giannarou, Daniel Elson and Guang-Zhong Yang. “Optical 

Biopsy Mapping for Minimally Invasive Cancer Screening”. In proc MICCAI (1) 2009: 

pp. 483–490 

 

David Noonan, Peter Mountney, Daniel Elson, Ara Darzi and Guang-Zhong Yang. “A 

Stereoscopic Fibroscope for Camera Motion and 3D Depth Recovery During Minimally 

Invasive Surgery”. In proc ICRA 2009: pp. 4463-4468  
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Peter Mountney and Guang-Zhong Yang. “Motion Compensated SLAM for Image 

Guided Surgery”. In proc MICCAI (2) 2010: pp. 496–504 

 

Peter Mountney, Danail Stoyanov and Guang-Zhong Yang. “Recovering Tissue 

Deformation and Laparoscope Motion for Minimally Invasive Surgery” IEE Signal 

Processing Magazine. 2010 June. Volume: 27. Issue 4. pp. 14-24 

 

Peter Mountney and Guang-Zhong Yang. “Context Specific Descriptors for Tracking 

Deforming Tissue”. To appear in the International Journal of Medical Image Analysis 

 

Mikael H Sodergren, Felipe Orihuela-Espina, Peter Mountney, James Clark, Julian 

Teare, Ara Darzi, Guang-Zhong Yang. “Orientation strategies in Natural Orifice 

Translumenal Endoscopic Surgery”. To appear in the Annals of Surgery 

 

The original technical contribution of the thesis includes:  

 

A boosted tracking-by-detection framework for recovering tissue deformation using 

systematic image descriptor evaluation, selection, and fusion; 

 

An algorithm for learning contextually specific information to improve tissue tracking 

online using unlabeled data; 

 

A SLAM system to simultaneously estimate laparoscope motion and 3D tissue structure 

using stereo cameras and robust region matching;   

 

Optical Biopsy Mapping; A method for registering multi-modality images to a common 

coordinate system for Augmented Reality enhanced navigation; 

 

Dynamic view expansion; Intra-operative image enhancement using photorealistic 

models generated via SLAM; 

 

A novel Motion Compensated SLAM (MC-SLAM) algorithm for laparoscopic camera 

localisation and dynamic mapping in a periodically deforming environment.  
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Chapter 2  
 

 

 

Image Guided Intervention and 

Minimally Invasive Surgery 
 

 

 

 

 

Surgical procedure has changed dramatically during the past two decades due to 

technological innovations. Advances in medical imaging, computing, fibre optics, and 

robotics have created radical, new approaches to surgery with improved consistency and 

patient outcome. Two of the most significant advances are Minimally Invasive Surgery 

(MIS) and Image Guided Intervention (IGI). In MIS, the use of small incisions to gain 

access to internal organs has reduced patient trauma and recovery time. It is now a 

common practice for many procedures in arthroscopic, abdominal and thoracic surgeries.  

 

The role of IGI is to use imaging and visualisation to guide the surgeon during operation. 

This generally involves the visualisation of pre- or intra-operative data by augmenting 

the normal surgical view to reveal structures below the tissue surface with see-through 

vision. The method has been adopted in many procedures for neurosurgery, orthopaedics 

and ENT (Ear, Nose and Throat) surgery. IGI has proven to be a valuable tool for 

localising critical structures and assessing anatomical pathways to reach target anatomy. 

However, its application is currently limited to rigid anatomy: image guidance for 

surgery involving large tissue deformation remains a significant challenge. IGI combined 

with MIS, promises to be a powerful tool that can further increase the functional 

capacities of MIS. In this chapter, an introduction to IGI and its application to MIS will 
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be provided. The current state-of-the-art techniques are reviewed and key technical 

challenges and clinical requirements highlighted.  

 
 

2.1 Image Guided Intervention 

For IGI, pre-operative imaging is used to identify the target anatomy and critical 

structures of a patient prior to surgical intervention. The model is then registered or 

aligned to the patient’s anatomy at the beginning of the procedure and information from 

the model is made available to the surgeon during the intervention. This enables the 

surgeon to create a detailed surgical plan, identify appropriate incision points, and 

determine the optimal pathways for reaching the target area whilst avoiding critical 

structures.  

 

Although the use of IGI for surgery is a recent practice, the basic idea can be dated back 

over 100 hundred years. Medical images were first used for surgery in 1895 [1] when X-

ray images were used to remove a needle embedded in a patient’s hand. However, it was 

not until 1908 that Horsley and Clark [2] introduced the stereotaxic frame. This is 

considered the earliest example of an IGI system using external reference landmarks to 

define co-aligned anatomical and instrument manipulation space. Progression was slow 

during the following years until the introduction of Computed Tomography (CT) in 1973 

[3]. This developed 3D patient-specific data with resolution adequate for surgical 

guidance. CT was advanced during the early 1980’s by the introduction of the personal 

workstation with high-end graphics, thus allowing IGI to be used in common operating 

theatres. These technological advances represent the advent of modern IGI.  

 

Four research groups are attributed with the simultaneous invention of frameless 

stereotaxy [4] - Dartmouth [5, 6], Tokyo Police Hospital [7, 8], the Vanderbilt group [9] 

and Schloendorff’s group [10]. These systems all incorporate the basic components of an 

IGI system; 3D pre-operative data, intra-operative tool localisation and tracking, and 

anatomical registration. Over the past two decades, these systems have expanded to 

incorporate a wide variety of sensing and imaging techniques. A schematic overview of 

IGI is provided in Figure 2.1, which defines the three main components of the system- 

i.e., pre-operative planning, intra-operative guidance, and post-operative assessment. The 

pre-operative stage relates to the generation of anatomical models based largely upon 
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patient-specific imaging data, atlas information, and operation-specific constraints. These 

models can then be used for surgical planning and guidance during the procedure. The 

intra-operative stage includes steps during the operation such as the use of intra-operative 

imaging and sensing data for tracking surgical instruments and monitoring tissue 

deformation. Post-operatively, the efficacy of the procedure is assessed, yet again, with 

imaging and, more recently, with pervasive sensing [11].  
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Figure 2.1 Overview of the three main stages of IGI for pre-operative planning, intra-operative 
guidance and post-operative assessment. The technical contribution of this thesis is mainly 
concerned with intra-operative guidance involving 3D tissue deformation recovery, instrument 
sensing/tracking, and intra-operative visualisation, as highlighted in red. 
 

In the following sections, a broad overview of the three main components of IGI is 

provided. The benefits and hurdles for its successful application to minimally invasive 

cardiac, abdominal and gastrointestinal surgery are outlined. The work in this thesis will 

be mainly focused on intra-operative methods- specifically the handling of tissue 

deformation, camera localisation, and 3D anatomical mapping.   
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2.1.1 Pre-operative Planning 

As previously mentioned, pre-operative data is used in IGI to generate patient-specific 

models. Information from the model, such as those associated with critical structures and 

abnormal tissue regions, are used to plan the procedure. The model can be created using 

multiple imaging modalities, a priori atlas information, structural segmentation, and 

patient specific anatomical constraints.  

 

A variety of imaging modalities have been applied to IGI including Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI), ultrasound, and Positron 

Emission Tomography (PET). In practice, the choice of the imaging modality depends 

on the type of surgery to be performed, but the use of MRI and CT for pre-operative 

planning is popular because of the imaging resolution and functional details that these 

imaging modalities can provide. Each imaging modality has its recognised benefits and 

drawbacks, however, they are complementary and can be used together effectively. By 

combining multiple modalities, it is possible to incorporate different anatomical and 

functional aspects of the surgical site for improved guidance and clinical decision-

making. 

 

For IGI, structural segmentation is the process of identifying and extracting anatomical 

details from the per-operative data. The extracted anatomy is used to build a patient-

specific model containing relevant information only. Retaining these details facilitates 

the surgical visualisation process. Segmentation can be performed manually, semi-

automatically, or fully automatically. Manual segmentation, whilst accurate, is time 

consuming and requires extensive user input. Semi-automated approaches reduce the 

requirement for user interaction by employing iterative methods such as region growing, 

level sets, or active shape models. Statistical shape models and atlases can be used for 

automated segmentation. Atlases can contain functional or anatomical data and can be 

used to register different image modalities together. For example, in [12] statistical 

atlases are used to aid the placement of electrodes for deep brain stimulation. The use of 

atlases for IGI is a significant field of research: more details can be found in [13].  
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2.1.2 Intra-operative Guidance 

 

2.1.2.1 Intra-operative Imaging Techniques 

Intra-operative imaging typically involves those modalities that provide real-time or near 

real-time performance and can be used for interactive guidance. This enables the surgeon 

to visualise changes in anatomy as the procedure progresses, and to update the pre-

operative model and the surgical plan appropriately. Important attributes of intra-

operative imaging are safety and the practical use in the operating room. The imaging 

equipment needs to enable clear and unrestricted patient access without interfering with 

surgical tools. Common intra-operative imaging modalities include Fluoroscopy, MRI, 

ultrasound, and biophotonics imaging techniques offering cellular and molecular details 

in situ.    

 

Fluoroscopy provides high spatial resolution with good temporal resolution. These 

characteristics make it a popular choice for tracking tools and catheters in interventional 

radiology, cardiology and electrophysiology. With continuing effort to reduce X-ray 

radiation for CT, intra-operative CT (iCT) is becoming a viable tool for IGI. The 3D 

volumetric data it provides enables increasingly accurate guidance and localisation of 

critical structures. It has been used in brachytherapy, spine surgery, and tissue biopsy. 

However, the temporal resolution is still limited (typically 2 Hz), and the segmentation 

of the 3D data in real-time is a significant technical challenge.  

 

Intra-operative MRI (iMRI) is one of the most promising intra-operative imaging 

modalities. It is safe to use and can provide high contrast images of the soft-tissue 

offering both anatomical and functional information of the surgical site. A variety of 

iMRI configurations exist [14], ranging from low field mobile installations to high field 

systems. For IGI, the issues that need to be addressed include: 1) specialised MR 

compatible tools must be developed; 2) access space of the magnet is restricted, currently 

making it ergonomically and practically difficult for most MIS procedures; 3) the 

installation and maintenance cost is prohibitive for most hospitals.   

 

Ultrasound is a popular alternative and is a well established imaging modality. It is 

relatively affordable and is capable of real-time image acquisition, while remaining safe 

and practical to use. It is also easily integrated into conventional operating rooms. The 
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disadvantage of ultrasound is that images are noisy and have low contrast [15]. It is also 

associated with very minor side-effects of enhanced inflammatory response and 

unwanted heating of soft-tissue.  

 

Recent advances in biophotonics have lead to a number of cellular and molecular 

imaging modalities that are amenable to intra-operative use. These approaches to optical 

are capable of tissue characterisation and include confocal laser scanning microscopes, 

Optical Coherence Tomography (OCT), two photon excited fluorescence, and high 

magnification endoscopy [16]. These probes are generally introduced into the patient via 

the instrument channel of the endoscope, and thus can easily be deployed in routine 

surgical environments. Currently, the disadvantage of these techniques is that data 

provision is for a small, localised region only. Due to tissue deformation, large-scale 

tissue surface surveillance is difficult.  

 

In most MIS procedures, endoscopic and laparoscopic cameras are used to visualise the 

operating site. These cameras use a variety of hardware including rod lenses, fibre optics, 

and Charge-Coupled Device (CCD) tip mounted chips. The choice of camera depends on 

the procedure. Rigid laparoscopes have a limited range of motion but are easy to 

navigate. Flexible endoscopes require more skill to manoeuvre and are used when access 

to target anatomy is difficult. Both high-speed and high-definition cameras can be 

employed, and these will be discussed in more detail in the following sections along with 

several imaging modalities that are being developed to measure tissue deformation based 

on structured illumination and time-of-flight principles.  

 

2.1.2.2 Instrument Localisation 

Tracking surgical instruments is an essential part of IGI. This data is used to register the 

position of the tools inside the patient and in relation to the pre-operative model. This 

enables the tools to be visualised even if they are not directly visible to the surgeon 

allowing safe navigation below the tissue surface. Tools can be handheld or robotically 

controlled and may employ geometric or triangulation [4] localisation methods. In 

robotics, kinematic modelling can be used to geometrically estimate the position and 

orientation of tools. Recent robotic technologies have been used to overcome the 

limitations of traditional hand-held devices and further extend the functional capabilities 

and manual dexterities of the surgeon. Robotic devices provide the control and 
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manoeuvrability required for precise, microsurgical tasks by offering motion scaling and 

tremor removal. In addition, robotics provide a platform for motion compensation and 

impose active constraints, which mark out no go zones, such as nerves and blood vessels, 

based on pre-operative data. In this regard, the use of surgical robots combined with 

haptic feedback offers a unique opportunity. Early robotic systems include ROBODOC, 

developed for orthopaedics (Total Hip Replacement and Total Knee Replacement) [17]; 

the PROBOT, for transurethral resection of the prostate [18, 19]; and the Acrobot [20], 

incorporating active constraints for knee surgery. Robot assisted surgery has recently 

moved towards master-slave systems where the surgeon sits at a control station and 

controls the robotic arms remotely. For example, the da Vinci™ system is a generic MIS 

soft-tissue robot capable of performing a range of procedures including urological, 

paediatric, gynaecological, and cardiothoracic surgery. It provides intuitive controls, high 

precision, tremor elimination, motion scaling, and up to seven degrees of freedom-of-

movement for instruments.  

 

Triangulation techniques can be applied to both handheld [21] and robotic tools [22] for 

instrument tracking and localisation These approaches use transmitters and receivers to 

localise the tool where either the transmitter or receiver is fixed. Early triangulation 

methods relied on sonic systems [23, 24], however, these were often affected by changes 

in temperature and humidity. Optical tracking methods are more reliable [21, 22, 25] due 

to higher accuracy and frame-rate. These methods use two or more cameras to track 

optical markers, which can be either active or passive. Active markers contain small 

Infrared Light Emitting Diodes (IRED). These markers are programmed to strobe at 

unique frequencies, enabling multiple markers to be tracked simultaneously in the same 

working volume. The main drawback is that the markers are mostly wired, which can 

restrict movement. Passive techniques employ reflective strips, patterns or balls. 

Accuracy and robustness can be improved by employing infrared light sources. For 

elongated rigid tools inserted into the body, the distal tip can be localised by placing 

markers at the proximal tip and performing hand-eye calibration [26]. This approach to 

localisation is, however, only applicable to rigid tools. Electromagnetic tracking may be 

used to track flexible tools such as endoscopes; however, large metal objects common in 

the surgical theatre can cause field distortion, and thus introduce errors to localisation 

accuracy.  
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2.1.2.3 Registration 

One of the fundamental problems in IGI is registration: the process of spatial alignment 

of separate imaging modalities, or sensors. In atlas generation, for example, registration 

is used to align multiple patient data-sets. Intra-operatively, registration is used to align 

pre- and intra-operative data, as well as surgical tools, to a common frame of anatomical 

reference. Temporal registration must also be performed in addition to spatial 

registration. Temporal registration updates pre-operative models to reflect changes in 

anatomy throughout the procedure. This is particularly important for procedures 

involving tissue deformation.  

 

Rigid registration methods attempt to estimate a 6 degrees-of-freedom transformation 

(i.e., 3D position and pose) between data streams. This is a well-defined problem with a 

number of practical solutions. It is, therefore, a common approach for commercially 

available IGI platforms. In practice, approaches to registration can be categorised 

according to the dimensionality of the data as either 2D/3D or 3D/3D.  

 

3D/3D registration techniques can be either geometric (feature) or intensity based. 

Geometry based approaches attempt to extract meaningful information (features) and use 

this to perform registration. This information can be conveyed as 3D points or surfaces. 

Point data can be created by fiducial markers or extracted from anatomical structures. 

Given two sets of point data, a least squares solution can be used to estimate the 

transformation. The surface of anatomical structures can be extracted by segmenting the 

data using algorithms such as marching cubes [27]. The surfaces represented as set of 

point data can be registered using the Iterative Closest Point (ICP) algorithm [28].  

 

Intensity based 3D/3D registration uses the original intensity values from the imaging 

data or its derivatives. The registration problem is posed as an optimisation problem with 

an objective function and similarity measure. The objective function is defined in terms 

of the intensity values and the transformation parameters. A variety of similarity 

measures can be used for registration, which include Sum of Squared Difference (SSD), 

Normalised Cross Correlation (NCC), or Mutual Information (MI) [29]. Generally, an 

interpolation scheme is employed during registration since optimisation takes place in a 

continuous domain wherein the data is intrinsically discrete.  
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2D/3D registration is closely related to the problem of camera pose estimation in 

computer vision. The problem is generally formulated as an optimisation problem, which 

iteratively searches for the optimal transformation. This requires careful initialisation, 

which can be manually defined or based on external tracking sensors. Similar to 3D/3D 

registration, current methods can be categorised as geometric or intensity based. 

Geometric methods such as [30, 31] extend the ICP algorithm to 2D/3D. Intensity 

methods require an additional step wherein simulated images are created: a direct 

comparison between 2D and 3D information is not possible using intensity. Projecting 

the 3D volume data into a virtual perspective camera generates a simulated image, while 

moving the location of the virtual camera during optimisation yields multiple simulated 

images. A similarity measure is used to identify the simulated image corresponding to 

the actual 2D data. This has been applied to broncoscopic images [32] [33], however, 

intensity based registration requires computationally intensive volume rendering and a 

large set of simulated images, thus making online registration difficult.  

 

2.1.2.4 Visualisation and Augmented Reality 

Visualisation is the front-end of IGI that is presented to the surgeon. It integrates 

information from pre-operative data, intra-operative imaging, and instrument tracking 

into a common visualisation. 3D volumetric data may be visualised as slices, surfaces, or 

by direct volume rendering. Augmented Reality (AR) combines pre-operative and intra-

operative data in a simple and intuitive manner. The pre-operative model is added to the 

physical world as viewed by the intra-operative imaging device. The intra-operative data 

is augmented with the computer-generated model. When the two data streams are 

merged, the result simulates see-through vision showing visually co-aligned 3D 

structures beyond the exposed tissue surface. AR has been applied to a variety of 

procedures including orthopaedics [34], neurosurgery [35, 36], and interventional 

radiology [37, 38]. A comprehensive review of medical AR is provided in [39] and AR 

in MIS will be discussed in further detail. 

 

2.1.3 Post-Operative Assessment 

During surgery, particularly MIS, assessing the efficacy of an interventional procedure is 

important. It provides an opportunity to detect comorbidity and refine patient 

management to maximise the therapeutic outcome. In practice, the type of post-operative 
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assessment is specific to the surgical procedure and can range from questionnaires and 

physical assessment to imaging and pervasive sensing. For example, post-operative 

assessment can be performed using the same pre-operative imaging modalities. This 

provides a direct comparison and validation of the efficacy of the operation by 

monitoring the patient’s recovery. For example, CT is used in [40] to identify 

haematoma in patients after neurosurgical procedures. In many scenarios, post-operative 

assessment is performed in the patient’s home via remote monitoring. In these cases, 

recently developed, miniaturised wireless sensors can be used to detect surrogate signs of 

post-surgical complication. This practice has attracted significant interest. In [41, 42], for 

example, the authors propose the use of ubiquitous sensing to monitor patient recovery. 

By detecting changes in gait and posture, it is possible to infer early signs of post-

surgical infection and complication, as well as assess the general well-being and 

recovery of the patient.  

 

2.2 Clinical and Technical Considerations of IGI for MIS 

2.2.1 Clinical Considerations of IGI 

Throughout this thesis, two types of surgery will be used to demonstrate the application 

of IGI for MIS – cardiac and hepatic surgery. Approximately half of the deaths caused by 

cardiovascular disease are related to coronary heart disease, which is strongly correlated 

to dietary habits, physical activity, and tobacco consumption. The illness is caused by a 

gradual build-up of fatty deposits (atheroma) in the coronary artery resulting in stenosis 

or narrowing of the artery. Bypass surgery is required for patients who cannot be treated 

with medication or angioplasty. During this treatment, an additional artery is used to 

bypass the blocked coronary artery. This enables the oxygen-deprived myocardium to 

receive an alternative blood supply. The bypass graft is usually harvested from the Left 

Internal Thoracic Artery (LITA) or the Left Internal Mammary Artery (LIMA).  

 

Open bypass surgery requires the use of a median sternotomy to gain access to the 

thoracic cavity, thus causing severe trauma that may lead to extended recovery time, 

scarring and morbidity. This has motivated the development of Minimally-invasive 

Direct Coronary Artery Bypass (MIDCAB) and Totally Endoscopic Coronary Artery 

Bypass grafts (TECAB). Minimally invasive approaches to cardiac surgery pose 

numerous, significant challenges to the surgeon, and image guidance can be used to 
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visualise and identify target anatomy as illustrated in Figure 2.2. IGI for cardiac surgery 

is far more complex than rigid anatomy due to large-scale tissue deformation. The shape 

and position of the cardiac surface is affected by both the cardiac and respiratory cycles, 

both of which must be modelled for accurate registration. The use of a mechanical 

stabiliser minimises the motion of the heart, but it also alters the shape and motion 

characteristic of the organ, making the direct use of a pre-operative model difficult. 

 

 
 

Figure 2.2 Illustration of IGI for cardiac MIS. A laparoscopic image of the cardiac surface 
augmented with a pre-operative model of a vessel visualised as Augmented Reality using Inverse 
Realism [43]. 
 

For hepatic surgery, IGI can enable visualisation and management of critical structures, 

such as the blood vessels and bile ducts and the definition of accurate tumour margins. 

Current practice for resection is to perform pre-operative surgical planning [44]. 

However, intra-operatively, the procedure may be enhanced by displaying pre-operative 

data to identify no go areas and guide resection margins as illustrated in Figure 2.3. 

When combined with robotic control, this practice enables active constraints that prevent 

the surgeon from moving tools into dangerous or critical anatomical areas. In practice, 

managing resection margins is crucial. If the resection is incorrectly performed, 

abnormal tissue may not be removed or excess healthy tissue may be damaged. This may 

cause increased recovery time and in some cases, liver failure.  
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There is strict guidance governing the current eligibility of patients for liver resection - 

only 5% to 15% of patients qualify [45]. Radio Frequency Ablation (RFA) offers an 

alternative treatment to patients who do not qualify for resection. Percutaneous RFA can 

be performed using laparoscopy or laparotomy with CT, MRI or ultrasound image 

guidance. Currently, errors in the delivery of RFA are largely due to the use of static pre-

operative images for guiding tools used in a deforming environment. Such circumstances 

delineate the importance of the effective handling of tissue deformation during image 

guided MIS. 

  

 
 

Figure 2.3 Illustration of IGI for hepatic MIS. A laparoscopic image of the liver augmented with 
the model of a tumour (green) and visualised as Augmented Reality using Inverse Realism [43] 
(blue). 
 

2.2.2 Key Technical Challenges  

2.2.2.1 Causes of Tissue Deformation 

Tissue deformation is the most significant problem preventing IGI from being clinically 

adopted for cardiac, abdominal and gastrointestinal surgery. Tissue deformation creates 

inaccurate registration between pre-operative and intra-operative data. Deformation 

during the procedure causes pre-operative data to be misaligned against intra-operative 

data. During MIS, insufflation of the patient during the procedure can cause significant 

organ shift. Furthermore, respiration can cause tissue motion and deformation: 
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contraction of the diaphragm and surrounding muscles cause the air to be drawn into the 

lungs. Naturally, this deforms the shape of the lung, however, it also affects other organs. 

In fact, the effect of respiration is evident on all visceral structures although this effect 

varies between pre-operative data (where breathing is freely controlled by the patient) 

and intra-operative data (where breathing is controlled by a ventilator). For cardiac 

procedures, myocardial contraction is a significant obstacle. As discussed earlier, a 

stabilising clamp is often used to constrain the heart during MIS cardiac surgery . This 

clamp significantly alters the shape of the heart and introduces another form of tissue 

deformation. The deformation involved is generally difficult to predict and it is highly 

non-linear. During MIS, it is, therefore, necessary to consider instrument-tissue 

interaction. This is an extremely complex problem, which is likely to require 

biomechanical modelling with detailed, physical properties of the tissue – information 

that may not be readily available for each subject.  

 

2.2.2.2 In situ Tissue Deformation Recovery 

As mentioned earlier, the use of tomographic imaging for tissue deformation recovery 

has clear advantages, but it is difficult to incorporate into the normal surgical workflow. 

For MIS, using laparoscopic or endoscopic images to register pre-operative data is highly 

desirable because it requires no additional hardware in the operating theatre, and it 

provides a natural interface for an AR visualisation of the pre-operative data. Currently, 

the standard technology used for intra-operative imaging during MIS is monocular 

laparoscopic/endoscopic cameras. Stereo laparoscopes are becoming more common with 

the introduction of robotic systems such as the da Vinci. Figure 2.4 shows six example 

images captured with laparoscopic/endoscopic cameras. These imaging systems provide 

2D video visualisation of the internal organ surfaces. The 3D structure of the tissue can 

be measured using either stereo or monocular cameras as shown in Figure 2.5.  

 

Extensive research has been carried out in computer vision in order to estimate 3D 

structure and tracking. However, its direct application to MIS involving deforming tissue 

has revealed numerous difficulties. Many of these challenges are shared with the broader 

computer vision community such as image blur, noise, artefact, non-linear illumination, 

occlusion, and changes in viewpoint. In MIS, tissue deformation is non-linear and does  
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Figure 2.4 Endoscopic and laparoscopic images illustrating specular highlights, tissue-tool 
occlusion, homogenous surface, repetitive structures, saturation and non-linear illumination. (a) 

Liver and gall bladder, (b) heart, (c) liver, (d) oesophagus (using narrow band imaging), (e) bowel 
viewed from the abdominal cavity and (f) bladder viewed from the abdominal cavity. 

(a)                                                                                 (d) 

(b)                                                                                 (e) 

(c)                                                                                 (f) 
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not conform to affine image transformations or the rigid body assumption commonly 

used in computer vision. 

 

The problem of tissue deformation tracking and structural estimation is further 

complicated by the visual appearance of tissue as shown in Figure 2.4. Specular 

highlights are common in MIS and are caused by reflections from a fine layer of mucus 

formed on the tissue surface. The appearance of tissue can vary greatly from organ to 

organ. It can appear homogenous, lacking in texture information, or highly repetitive and 

visually similar. Structures such as veins, arteries and vessels can be observed through 

the tissue. However, because these structures are below the surface of the tissue, their 

visual appearance alters depending on illumination and the camera’s viewing angle. 

Furthermore, image artefacts, such as smoke caused by diathermy, can result in full or 

partial occlusion of the tissue surface. Ultrasound, illustrated in Figure 2.5 (e), offers an 

affordable modality for visualising structures below the surface but has a poor signal-to-

noise ratio. Due to these difficulties, several optical approaches have been proposed 

which use additional hardware to address the issue of tissue deformation tracking. 

 

Structured light has been used to recover the shape of the surgical site for augmented 

reality [46]. More recently, the use of projected coded patterns, [47] [48], has also been 

investigated. This approach requires an additional surgical port but is not reliant on the 

natural visual appearance of the tissue and, as a result, it is robust where other optical 

techniques may fail. These methods are mainly limited by the modification of the 

surgical view caused by the active projection of a pattern onto the tissue surface. 

Although this may be done in a non-visible spectrum, such a process requires specialised 

optics. In addition, temporal tracking is difficult because the projected pattern may not 

correspond to the same region on the tissue over time.  

 

Recently, time-of-flight cameras have been adapted for reconstructing 3D surfaces 

during MIS [49]. Time-of-flight cameras function on a similar principal to Light 

Detection And Ranging (LIDAR). The sensors consist of a pixel matrix and an 

illumination device, which projects incoherent near-infrared light with a modulating 

frequency. The pixel sensors are synchronised to the same modulation frequency and 

measure the phase delay between the emitted and measured light. The time required for 

the light to emit, reflect, and be measured corresponds to the distance it travels from the 

camera. In Figure 2.5 (a-c) a liver phantom is imaged using a MESA-Imaging SR-3000  
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Figure 2.5 Intra-operative recovery of 3D tissue geometry. (a-c) Image of a phantom liver 
captured with (a) a laparoscope and (b-c) a MESA-Imaging SR-3000 Time-of-Flight camera 
showing the 3D depth map (b) and reflectance image (c). (d) Shape from Shading reconstruction 
from monocular endoscopic images [50]. (e) A 2D ultrasound image and (f) a dense stereo 
reconstruction from stereo laparoscopic images [51]. 
 

(a)                                                                               (d) 

(b)                                                                               (e) 

(c)                                                                               (f) 
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time-of-flight camera. These devices are currently in their infancy and early results 

appear promising. Although existing devices have limited frame rate, resolution, and 

field-of-view, it is an interesting approach that may harbour viability.  

 

2.2.2.3 Non-Rigid Registration 

Rigid registration methods assume that a single global transformation, generally 

consisting of a rotation and translation, can be used to describe the spatial relationship 

between the patient’s anatomy and pre-operative data. This assumption does not translate 

to non-linear tissue deformation. Registration with free-form deformation is a well-

researched topic in atlas generation but a reliable, fully automated intra-operative method 

remains difficult to achieve.  Approaches to non-rigid registration for IGI include 2D/3D 

or 3D/3D methods. As previously discussed, they can also be intensity based or feature 

based. For IGI, registration of patient anatomy to an atlas is frequently used.  

 

Intra-operative, non-rigid image registration for IGI generally requires registration across 

different imaging modalities making the process more challenging. During hepatic 

surgery, for example, pre-operative CT can be registered to intra-operative 2D ultrasound 

data using a point based method [52]. The accuracy can be improved via surface 

registration [53]. During cardiac surgery, pre-operative CT and intra-operative 

ultrasound are used to register the heart using fiducial markers [54]. CT is combined with 

an angiogram [55, 56] to segment the coronary tree, which is manually registered to 

intra-operative laparoscopic images. A method has been proposed [57], to register a 4D 

cardiac data-set to stereo laparoscopic images, thus making it feasible for beating heart 

procedures.  

 

2.2.2.4 Intra-operative Instrument Tracking 

In IGI, it is essential to track intra-operative imaging devices, as well as surgical tools for 

navigation and guidance. The use of infrared markers for rigid instruments has been 

popular as described earlier. Flexible instruments used in gastrointestinal surgery and 

more recently in the exploration of Natural Orifice Transluminal Endoscopic Surgery 

(NOTES) require an alternative approach. Electromagnetic tracking systems can be 

employed as they do not require the instrument to be rigid or line of sight; however, their 

accuracy is affected by other electronic devices and ferromagnetic objects such as 
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surgical tools. The problem of defining the relative position of the laparoscopic or 

endoscopic camera in MIS, is similar to general camera pose estimation in computer 

vision. It is feasible to use the imaging device itself to estimate the camera pose. In this 

case, there are two parallel approaches to this problem: i.e., Structure-from-Motion and 

Simultaneous Localisation And Mapping (SLAM). The exact technical details of these 

methods will be discussed later in this chapter.  

 

2.2.2.5 Visualisation and Augmented Reality 

In MIS, intra-operative images from a laparoscope/endoscope are usually visualised on a 

2D monitor. Physical constraints in the operating theatre dictate the possible location of 

the monitor, often leading to off-axis visualisation. Loss of 3D vision and a lack of 

additional depth cues, such as shadows, make 3D navigation difficult. This problem is 

further complicated by the high magnification factor of the camera, which leads to 

localised field-of-view and disorientation.  The visualisation of intra-operative data can 

be improved by stereo-vision, similar to that adopted by the da Vinci system, and 

alignment of visual-motor axes. A second light source can be introduced in MIS [58] to 

create an shadow barely visible to the human eye which is digitally enhanced to provide 

an additional depth cue. A tri-axial microelectromechanical system sensor is placed on 

the tip of an endoscope in [59] to detect its orientation. This information is used to 

rotationally correct the image during NOTES, thus improving the visual-spatial 

orientation of the surgeon.  

 

The application of orientation correction has also been addressed using image based 

techniques [60-62]. Rotational image rectification assumes that the only camera motion 

is rotational, around the optical axis, or translational, along the optical axis. This is rarely 

the case in practice. Dynamic view expansion [63] is proposed to enhance intra-operative 

navigation and reduce visual-spatial disorientation. The method uses optical flow to 

increase the field-of-view of the camera through image mosaicing. Intra-operative image 

enhancement techniques such as these can provide valuable orientation information; 

however combining multi-modality imaging data require more sophisticated 

visualisation methods. 

 

In MIS, it is intuitive to display pre-operative data to the surgeon in the 

laparoscopic/endoscopic images. This AR approach to visualisation removes the 
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requirement for addition visualisation equipment such as head mounted displays and 

enables smooth integrating with the existing surgical workflow. However, accurate 

visualisation is not solely dependent on registration and additional errors can be 

introduced by the camera optics and camera motion [39]. The optical lens of the camera 

introduces radial distortion into the image which must be catered for. The distortion can 

be estimated by camera calibration and either the intra-operative or pre-operative images 

altered accordingly. The camera motion must be tracked to register the position of the 

imaging device to the pre-operative data. Tracking techniques described earlier can be 

used in conjunction with a hand-eye calibration process. Both of these steps can 

introduce additional error into the system. AR has been used for a variety of applications 

in MIS and detailed reviews are provided in [15, 39, 64].  

 

AR has been applied in [65, 66], where the position of a bronchoscope is visualised to 

aid navigation. Several systems have been proposed for laparoscopic surgery [38, 67-71]; 

however these methods do not take into account deformation and employ rigid 

registration methods. Major challenges of AR include the correct handling of occlusion 

and depth perception. Objects correctly registered and rendered in metric space, may still 

appear to be floating. Psycho-visual factors influencing depth perception are addressed in 

[43, 72]. A virtual mirror is introduced in [72] for interactive 3D visualisation and in [43] 

a method is proposed based on pq-space called Inverse Realism, which is suitable for 

real-time implementation with high fidelity depth perception.  

 

 

2.3 Vision Based Techniques for Soft-tissue Deformation 

Recovery 

For soft-tissue deformation recovery, the use of vision-based techniques will mainly be 

investigated. As previously mentioned, this is desirable as it exploits existing hardware 

in the surgical theatre. In practice, however, there are a number of challenges involved in 

vision-based techniques for MIS. An explanation of the physical configuration of the 

imaging devices in MIS, from camera models to calibration methods, is provided in the 

following sections. This is the basis for recovering 3D deformation and the relative poses 

of the laparoscopic cameras.  
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Figure 2.6 (a) illustrates a pinhole camera model and the projection of a 3D object on to 

the image plane. Two cameras simultaneously viewing the same 3D scene, as illustrated 

in Figure 2.6 (c), are related by epipolar geometry. Epipolar geometry describes the 

relationship between the 3D points in the scene and projections into the cameras’ image 

planes as defined by the cameras’ intrinsic and extrinsic parameters. The centre of the 

left camera is taken to be the origin. In this case, the extrinsic parameters describe the 

translation and rotation of the right camera relative to the left camera. Epipolar geometry 

can be illustrated in Figure 2.6 (c) where C  and ′C  are the camera centres. M is a point 

in 3D and m  and 'm are the projection of M into the left and right cameras. e  and 'e  

are the epipolar lines.  

 

With multiple cameras, it is possible to estimate the 3D geometry of a scene. From 

Figure 2.6 (c), it is clear that, if the positions of m  and 'm in the image are known, the 

position of M  can be estimated. In practice, the back-projected rays may not intersect in 

3D due to noise in the image and errors in the estimation of the intrinsic and extrinsic 

parameters. Therefore, M  is usually taken to be the midpoint of the shortest distance 

between the rays, which is computed using Singular Value Decomposition (SVD).  

 

The unknown intrinsic parameters of the camera model and the extrinsic parameters of 

the stereo cameras can be estimated using a calibration process: this is illustrated in 

Figure 2.6 (b). Requiring only a few minutes, the stationary cameras observe a coplanar 

calibration grid at several (usually 10-12) orientations. There are a number of well-

known calibration algorithms sourced within the computer vision communities [73-75]. 

Implementations of these methods are available online in several calibration toolboxes 

[76, 77]. Calibration is usually performed once pre-operatively. The extrinsic parameters 

of a stereo laparoscope are presumed fixed, and the intrinsic camera parameters are 

assumed to be constant during a MIS procedure. Otherwise, the parameters can be 

adaptively estimated [78]. 
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Figure 2.6 The physical configuration of a laparoscopic camera. (a) Monocular optical set-up 
illustrating an object in 3D projected onto the 2D image plane with respect to the camera centre C. 
(b) Calibration of monocular optics showing the principal point and calibration grid. (c) Stereo 
optical set-up with left camera centre C, right camera centre C’ and two epipolar lines e and e’. 
The point M in 3D is projected onto the left and right image plane at locations m and m’, 
respectively. 
 

2.3.1 Recovering Soft-Tissue 3D Structure 

For 3D shape recovery, there are many techniques that have been developed by the 

vision community over the years. In this section, the focus is on methods that have been 

applied in MIS, these are summarised in Table 2.1. The understanding of biological 

vision systems and the cues humans use to interpret images inspired early work in the 

field of computer vision. This led to the development of Shape-From-X algorithms, 

(a)                                                                             (b) 

(c) 
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inspired largely by the work of Marr [79]. In Shape-From-X, a variety of visual cues 

have been used including shading, texture, and stereo disparity. For MIS, approaches to 

3D tissue reconstruction have mainly exploited two visual cues: shading and stereo. 

 

Shape-From-Shading (SFS) is a technique used to estimate surface information by 

observing the surface under predefined lighting conditions. SFS can be used to estimate 

surface normals, gradient, slant, tilt, and local depth. The formulation of an image is 

dependent on the structure and properties of lighting and surface. Therefore, by making 

assumptions about lighting and surface properties, it is possible to infer information 

about the structure. The benefits of SFS include performance using a single camera and 

application to homogenous areas. In its simplest form, SFS assumes an infinitely distant 

light source, orthographic projection, the Bidirectional Reflectance Distribution Function 

(BRDF) and Lambertian reflectance. Under these conditions, SFS has been used to 

accurately estimate surface information.  

 

Traditional SFS assumptions have proven overly constrained for MIS as these images are 

often affected by perspective and lens distortion. Furthermore, the environment does not 

strictly obey the BRDF, and specular highlights are not compatible with the Lambertian 

reflectance assumption. The conjoined light source and camera ,shown in Figure 2.7 in a 

number of configurations, also breaks with the assumption of an infinitely distant light 

source. In order to use SFS for MIS, these constraints must to be relaxed.  

 

Numerous authors to date have addressed these constraints. Lens distortion and 

perspective projection are addressed in [80] and [81, 82], respectively. In [83], a method 

is proposed by assuming the light source is positioned at the optical centre of the camera. 

Although this is not strictly true, it is a reasonable assumption in practice. Building on 

this work, a modified BRDF is introduced in [84], which monotonically decreases with 

respect to the cameras viewing angle. Although these methods increase the general 

applicability of SFS to MIS, the main problem remains that only the relative surface 

shape is recovered but not the metric 3D representation. To avoid this problem, stereo 

methods can be used.  
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Figure 2.7 Examples of the physical optical and lighting configuration of endoscopes and 
laparoscopes. (a) 30° laparoscope, (b) 0° laparoscope, (c) flexible endoscope, (d) stereo 
laparoscope with two light sources, (e) stereo laparoscope with a single light source and (f) the da 
Vinci robotically controlled laparoscope. 
 

 

 

 

(a)                                                                           (d) 

(b)                                                                           (e) 

(c)                                                                           (f) 
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Figure 2.7 (d-e) shows the optical configuration of two stereo laparoscopes. Dense 

stereo algorithms are based on establishing pixels that correspond between stereo image 

pairs. An approach based on a simple, normalised cross correlation algorithm is used in 

[85] to estimate the surface of the heart and the authors demonstrate that such a system is 

capable of surface reconstruction and dealing with discontinuities introduced by surgical 

tools. Dense techniques such as this, however, require regions on the tissue surface to be 

distinguishable by the chosen correlation method. In MIS, specular highlights, 

homogenous tissue, poor illumination, and image noise can introduce significant errors. 

These errors can be magnified in subsequent depth estimation due to the small baseline 

of typical stereoscopic laparoscopes which is generally around 5mm and illustrated in 

Figure 2.7 (d-e). Prior knowledge or strong geometrical assumptions can be introduced 

to improve surface reconstruction.  

 

Splines have been used to approximate the surface of the heart [86-88] under a 

smoothness assumption. These approaches identify a number of control points on the 

tissue surface to provide an initial 3D estimation of the geometry. This is poorly suited to 

areas of discontinuity caused by surgical instruments. Region-based techniques, on the 

other hand, extract salient regions of interest and search for correspondences between the 

stereo images, [89]. The drawback of region-based techniques lies in surface 

reconstruction, which is likely to be sparse as it relies on salient regions existing in the 

image. To address this issue, methods based on sets of salient features have been used to 

recover a sparse 3D depth map and, subsequently, propagate this information to achieve 

a semi-dense 3D representation, [51]. The major strength of region-based approaches is 

their ability to track temporal tissue deformation. A plethora of region extraction and 

matching techniques exist and will be reviewed in detail within the next section.  

 

Table 2.1 Summary of methods used in MIS for 3D reconstruction from image data. 

SFS Assumptions Stereo Approaches Active Technique 

Orthographic [83] Computational [90, 91] Fiducial [92-94] 

Perspective [80-82] Surface Priors [84, 86, 95, 96] One-shot [46, 47] 

Illumination [97] Cue Fusion [50, 82] Progressive [98-100] 
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2.3.2 Temporal Tissue Tracking and Modelling 

 

2.3.2.1 Deformable Tissue Tracking 

For MIS, the dynamic motion of the soft-tissue can be recovered and modelled by 

temporally tracking regions of interest through a video sequences. A summary of these 

methods is provided in Table 2.2. Relevant practical challenges include partial or full 

occlusion, motion blur, image noise, and changes in image scale and orientation. 

Additional challenges involving tissue deformation during MIS are illustrated in Figure 

2.8. The surface appearance of tissue, for example, can vary greatly from homogenous to 

highly texturised. Artificial fiducials have been used to create distinct patterns in the 

image space: these are easily distinguished from their surroundings, thus simplifying the 

tracking problem and increasing robustness. Early work in this field [93] used markers 

containing a Light-Emitting Diode (LED), which is easily detected in the image space. In 

[92, 94], patterned square markers were attached to the tissue surface. The markers were 

of a known size enabling the 3D position to be estimated from a monocular camera. In 

practice, there are three significant drawbacks with the use of fiducial markers. First, the 

surgeon is required to attach the fiducials to the surface, which can be time-consuming. 

Secondly, the fiducials can obscure the tissue surface and alter the surgeon’s field-of-

view. Finally, the density of the surface estimate is limited by the number of fiducials 

used.  

 

To address some of the problems associated with the use of fiducials, the surface of the 

tissue can be marked with diathermy [101, 102]. This is an efficient way of creating a 

distinct mark on the tissue and tracking homogenous regions. However, it is not an 

advisable technique for patient study as intentional tissue scaring may have long-term, 

adverse effects. Tracking methods which use naturally occurring features such as vessels, 

corners, or blobs are preferred. These regions can be selected manually or automatically. 

Manual selection, [101, 102], ensures the quality of the regions for tracking, however, 

automatic selection is preferable as it removes the need for user interaction. Automatic 

region detection (also known as feature detection) involved identification of salient 

regions in the image, which are distinguished from their surroundings. A large number of 

region detectors exist and a comprehensive review of their application to MIS is 

provided in [103]. 
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Figure 2.8 An example of non-linear deformation of the cardiac surface. The lines indicate 
corresponding regions between (a-d) the first frame in a video sequence and (e-h) images of the 
cardiac surface at a four temporal positions in the cardiac cycle. 
 

(a)                                                                                     (e) 

(b)                                                                                     (f) 

(c)                                                                                     (g) 

(d)                                                                                     (h) 
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 Automatically detecting salient regions in MIS images is challenging due to the variety 

of imaging conditions and differing visual organ appearance. Classic corner detectors, 

such as Harris [104] and Shi and Tomasi [105]have been used to detect regions of 

interest on the epicardial surface [106-108]. These methods use the second moment 

matrix or the autocorrelation matrix, which describes the gradient distribution in a local 

neighbourhood. The corner strength of a region is determined by the magnitude of the 

eigenvalues. A region is detected if the corner strength is above a predefined threshold. 

Non-maximal suppression can be used to remove poorer corners and manage the number 

of detected features. However, the surface of tissue may not contain corner-like 

structures. Maximally Stable Extremal Regions (MSER) [109] have been used to extract 

blob structures on tissue [89]. The MSER approach is similar to watershed segmentation. 

MSER detects self-contained blobs in the image in areas where the intensity values 

inside the blob vary significantly from its surroundings. Corner detection and blob 

extraction are complementary, and thus can be combined to increase the number of 

detected regions, [89]. It should be noted that these methods do not explicitly model 

invariance to changes in scale.  

 

Scale invariant region detectors extract salient regions of varying size in the image. The 

application of scale invariant trackers on soft-tissue has been recently studied in [103]. 

Scale invariant detectors, such as the Laplacian of Gaussian [110], Difference Of 

Gaussian (DOG) [111], and Fast Hessian [112], automatically select the scale allowing 

each region its own characteristic size. These methods vary in their implementation but 

commonly detect regions at several scales simultaneously, and the scale level is selected 

according to a maximum in the scale space. The scale space is either a set of images with 

different levels of resolution or a size-varying filter. Non-maximal suppression can be 

used to remove regions and prevent multiple detection of the same point at different 

scales. One advantage of scale invariant approaches is the associated size of detected 

regions. This enables the whole region to be used for tracking whereas a fixed size 

detector may only detect part of the region. The main benefit of this approach, however, 

is the facilitation of tracking-by-detection, which will be discussed in due course. Once a 

region has been detected, information from the image must be selected to represent the 

region.  

 

Tracking algorithms can generally be categorised as recursive or tracking-by-detection 

[113] approaches. Recursive algorithms have been employed for over twenty years, 
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[114]. However, recent advances in computational power have enabled real-time 

tracking-by-detection, which has led to further research in this area. The following 

sections present a comparison of these approaches and reviews of how they have been 

used in MIS.  

 

Recursive methods, such as Lucas Kanade (LK) [115], and mean-shift search locally for 

the best match that minimises a measurement function. The LK algorithm and its 

extensions are based on optical flow and generally work in image space. This approach 

aims to register a template of the region by warping or transforming it to align with the 

input data. The transformation model W defines a set of image warps (e.g. affine, 

homography). The LK tracker attempts to find the set of parameters p  of the 

transformation model W by iteratively minimising a cost function. It is assumed that a 

current estimate of p  is known. LK is based on three core assumptions, [116]: 1) 

brightness constancy - the pixels associated with a region do not change brightness from 

frame-to-frame; 2) temporal persistency - the image transformation between frames is 

small; 3) spatial coherence - neighbouring pixels belong to the same surface. During 

MIS, the light source attached to the camera can invalidate the brightness constancy 

assumption due to its intensity in the central field-of-view. Furthermore, the light source 

is co-located with the camera and therefore mobile. The assumption of temporal 

persistency is related to the camera’s frame rate and organ motion. Motion parallax and 

occlusion caused by tools can affect the spatial coherence of the tracked regions. These 

assumptions are rarely held in real-world tracking problem; non the less, LK approaches 

have been widely used [114] and adapted to function in MIS tracking.   

 

In [89], for example, the LK algorithm is modified to work in 3D and to track the surface 

of the heart. By formulating the problem in 3D, it enables computationally efficient 

tracking with multiple cameras. In [108], an affine model is used in conjunction with a 

linear illumination compensation model and a robust estimator to address partial 

occlusions. Both [89] [117] demonstrate the ability of the LK tracker to follow multiple 

regions on the surface. A recent study, [101, 118], has performed a comparative analysis 

of recursive methods for tracking the stomach, liver and gall bladder. The authors 

compared a variety of transformation models (affine and homography), cost functions 

(forward additive and inverse), optimisation methods (Gauss-Newton and Efficient 

Second-order Minimisation) [119], and parameterisations (greyscale, Red, Green and 
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Blue (RGB) colour space, and mean of gradients). The most effective model is an affine 

model with mean gradients, forward additive cost function, and Gauss-Newton 

minimisation. It has also been determined that changes in illumination present the most 

significant challenge to all trackers, particularly the inverse composition. 

 

The main strength of the LK tracker is its ability to find the best fit between the data and 

the template. Although non-linear deformation is not explicitly represented in the 

transformation model, it finds the best transformation available. LK based approaches 

have been shown to work in constrained conditions. However, there are fundamental 

weaknesses here, which greatly affect their application performance for MIS.  

 

It has been shown [101, 118] that non-linear changes in illumination can violate the 

brightness constancy assumption and cause the tracking process to fail. Temporal 

persistency, alternatively, introduces two problems - recovering from failure and error 

propagation (i.e. drift). The frame-to-frame tracking nature of LK requires strong prior 

knowledge of the region’s current location and parameters. As a result, if region tracking 

fails, it cannot be reinitialised easily. This presents a problem for MIS as occlusion 

becomes frequent with the use of surgical instrument. Error propagation, in general, is a 

product of deviation in the estimation of p , which propagates over time leading to drift. 

This problem is exacerbated by image noise and changes in illumination. Thus, in 

practice, forgoing the update removes drift, but this limits the range of image 

transformation that can be tracked and makes convergence less likely - especially in the 

presence of large tissue deformation.  

 

Mean-shift trackers [120, 121] require a region to be tracked and represented as a 

histogram of the RGB values of the pixels. This histogram is a probability distribution 

that provides a look up table. The tracker defines a search window based on the size and 

previous known location of the region for each new frame. Each pixel in the search 

window is assigned a weight according to the probability of it belonging to the tracked 

region. Next, the centre of mass is computed for the window. The centre of the window 

is then moved to the location of the centre of mass whereupon the probabilities are 

computed again. This is performed recursively until the window becomes stationary. 

Mean-shift tracking is attractive for MIS because it does not rely on spatial information, 

and it can accommodate deformation [122, 123].  
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The main draw-back of recursive methods is the requirement of strong priors. This 

prevents long-term robust tracking in the presence of occlusion, which is common in 

MIS. Tracking-by-detection on the other hand, performs region detection for each new 

frame. The regions are transformed into a feature space where they are matched and the 

corresponding regions are identified. This approach is robust to occlusion since temporal 

information is not required. This, however, introduces a different problem. The region 

must be represented such that it is invariant to large image transformation: this can be 

computationally demanding. Despite such complication, the recent success of SIFT [124] 

and SURF [112] has demonstrated the potential of real-time implementation.  

 

Tracking-by-detection systems are generally composed of a region detector, a descriptor, 

and a matching strategy. Scale invariant region detectors, as previously mentioned, 

represent a fundamental component of tracking-by-detection. The detectors enable region 

matching to be performed across scales and, in some cases, they correct for affine 

transformations, [103]. Region detection selects a subset of regions in the image for 

consideration for matching. This is important because descriptors can be computationally 

expensive. However, because only a subset of the image is considered for tracking, it is 

important that the detector has high repeatability. High repeatability means the same 

regions will be detected under different image transformations. Low repeatability can 

lead to tracking failure, regardless of the matching power of the descriptor. 

 

In the tracking process, descriptors are used to represent the region of interest in feature 

space. Prior to converting the region to feature space, it may be warped to make it 

invariant to image transformation. The scale, rotation, and affine parameters of a 

detected region can be estimated, and the region is normalised in image space. Region 

descriptors select what information from the image will be used (e.g. greyscale, colour, 

gradient) and how this information will be represented (e.g.. energy in the co-occurrence 

matrix [125], non-uniformity of the run length matrix [125], histograms of gradients 

[126]). These choices dictate how effectively a region is distinguished from its 

surroundings and, consequently, the success of the tracker. 

 

Many matching strategies exist to determine the corresponding regions between two 

images. Given two sets of regions encoded in feature space, the aim of the matching 

strategy is to find corresponding regions within these images. This establishes material 

correspondence over time during tissue tracking. Matching strategies can be one-to-one 
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(e.g. nearest neighbour), one-to-many (e.g. nearest neighbour ratio), or many-to-many 

(e.g. Random Sample Consensus (RANSAC) [127]). Global matching techniques, such 

as RANSAC, are used extensively for object tracking under a rigid model assumption.  

 

The strengths of tracking-by-detection for object tracking in rigid man-made 

environments are well demonstrated: it is naturally able to deal with occlusion and is 

robust to large image transformations. Notable problems with this approach are 

localisation accuracy, region density, and outliers. Localisation accuracy can be affected 

by the discretisation of scale space and noise in the image. Region density can be 

affected by repetitive patterns. This is not a problem with object tracking where multiple 

regions are used to represent the object.  

 

The main drawback of tracking-by-detection is the ad hoc modelling of image 

transformations and the assumptions used. These techniques are only designed to work 

within the range of image transformations they model. Their assumptions have been well 

tuned for man-made static environments. However, modelling non-linear tissue 

deformation is challenging. The choice of what information is suitable for discriminating 

a region from its surrounding is context-specific. The performance of descriptors can be 

affected by low contrast images, changes in illumination, and specular highlights. This 

makes the selection of a robust descriptor challenging especially for MIS. 

 

2.3.2.2 Tissue Deformation Modelling 

In addition to tracking, explicit deformation modelling is also important. Modelling can 

be done either statistically or parametrically, and it enables the prediction and 

anticipation of tissue motion. For example, deformation resulting from respiratory and 

cardiac cycles can be modelled as periodic or quasi-periodic signals [128] as illustrated 

in Figure 2.9. The dynamic motion of abdominal organs, such as the liver [129], is 

correlated to the periodic motion of the diaphragm. In [130], it is shown that organ 

positioning during free breathing motion is not cyclic. However, during MIS, a ventilator 

often controls respiration: it regulates the frequency of breathing and renders the motion 

periodic [131]. Modelling the respiratory cycle from CT and MRI data has been well 

studied. These imaging modalities have been used to demonstrate how a typical 

respiratory cycle is asymmetrically periodic with a longer dwell time at exhalation [132]. 

In MIS, the spatial arrangement of the organs is different to that of pre-operative setting 
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due to carbon dioxide insufflation. Organs shift, and the inflated cavity provides more 

room for this motion. The motion of the epicardial surface is more complex because it 

contains deformation caused by both cardiac and respiratory cycles. The deformations 

can be decoupled [89, 133] into their intrinsic components. A number of approaches are 

suggested for modelling cardiac motion, including Fourier series [87], vector 

autoregressive models [87], Taken’s Theorem [134], and Linear Parameter Variant Finite 

Impulse Response Models [131].  

 

Modelling non-periodic tissue deformation caused by instrument-tissue interaction or 

muscular contraction is more challenging. This is likely to require prior knowledge of the 

physical characteristics of the organ. These characteristics are patient and organ-specific 

and require the application of statistical shape models and finite element biomechanical 

analysis, such as those used in needle steering and surgical simulators [135]. 

 

         
Figure 2.9 Tissue deformation is caused by the cardiac and respiratory cycles. Example signals of 
the (a) respiratory and (b) cardiac cycles illustrating their periodic and quasi-periodic nature.  
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Table 2.2 Summary of tissue morphology and structure estimation methods applied in MIS. 

Organ 

Recovered Scene Geometry 

Static Deforming 

Heart [85, 90, 107, 136] 
[86, 88, 89, 92, 95, 108, 134, 137-

142] 

Abdomen / Liver / Gall Bladder 
/ Kidney 

[25, 143-146] [101, 118, 122, 123] 

Colon [147-149] - 

Bladder [150-153] - 

Oesophagus [154-156] - 

Sinus [126, 157-161] - 

 

 

2.3.3 Structure and Camera Motion Estimation 

As previously mentioned, two common methods for structure and camera motion 

estimation are: Structure-from-Motion and SLAM. Figure 2.10 compares these 

methodologies schematically. Both of these approaches assume the environment is 

structurally static: a weighty assumption for MIS.  They have been employed, regardless, 

to situations wherein there are small deformations only. The theoretical frameworks of 

the two approaches, their limitations, and the extension of these techniques to non-static 

environments is described in the following section. 

 

2.3.3.1 Structure-from-Motion 

Structure–from-Motion has its origin in computer vision. It is a general term for methods 

that recover the structure of a scene and the motion of the camera (the reader is directed 

to [73] for a comprehensive mathematical formulation of the problem). A variety of 

Structure-from-Motion approaches exist, however, the basic framework is consistent and 

illustrated in Figure 2.10. It includes: 1) image registration and frame-to-frame camera 

motion estimation; 2) global optimisation or bundle adjustment where multiple images 

are registered; and 3) scene reconstruction.  
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The scene model describes the assumptions made regarding the structure and geometry 

of the environment and defines the relationship between pixels in different images. The 

pixel motion between images can be modelled as a projective (8 DOF), affine (6 DOF), 

similarity (4 DOF), Euclidean (3 DOF), or translation (2 DOF) transformation. The type 

of model selected depends on the assumptions made regarding the shape of the organ.  

 

A planar assumption, as employed in [144, 151-153, 162, 163], enables the use of simple 

scene models. This assumption is acceptable if the endoscope is far from the organ and 

motion parallax is not observed. The planar assumption is not held in the oesophagus or 

colon because the anatomy is intrinsically tubular. Several authors have exploited this 

prior anatomical information [149, 154, 155] to model the surface of the oesophagus and 

colon as a generalised cylinder. Recovering structure and motion in an unknown, 

unstructured environment without prior knowledge or assumptions requires a projective 

scene model. Such models have been applied on the mouth [61], abdomen [60, 150, 

164], colon [147], static heart [165], and bladder [166]. The full projective model can 

work in the presence of motion parallax and can accurately recover the camera motion in 

unstructured environments. However, the choice of the scene model is application 

specific. For example, if the desired end product is a 2D mosaic, a full projective model 

is not required. 

 

Image registration is the method by which the relationship between two or more images 

is estimated according to the scene model. This usually involves estimating the 

fundamental matrix, which describes the change in position of the camera between 

images. However, camera motion estimation is a by-product of registration, and, if an 

inappropriate scene model is chosen (i.e. planar for a non-planar environment), the 

recovered camera motion will be inaccurate. Registration can be performed using direct 

alignment or region matching.  
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      Simultaneous Localisation And Mapping                                Structure-from-Motion 

 

 

Figure 2.10 Illustration of structure and camera motion estimation. Simultaneous Localisation 
And Mapping (left) demonstrating sequential and incremental long term mapping with 
uncertainty estimates, motion prediction and updates. Structure-from-Motion (right) showing 
frame to frame pose estimation and global optimisation. 
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Direct alignment works with the pixel values in the image [149, 154, 155] and attempts 

to find a match between every pixel in a pair of images by warping one of the images. 

The set of warps applied to the image can be exhaustive, and this can be computationally 

expensive. It is, therefore, common to apply iterative techniques, such as LK, which 

minimise the error metric. Error metrics are usually the sum of squared difference, the 

sum of residual value, or the sum of absolute difference. Direct methods require the 

images to overlap and be sufficiently similar in order to converge and correctly perform 

alignment. This makes them well suited to sequential online applications. Performance 

directly on the pixel values makes these approaches robust to blur, however, they can 

suffer from the aperture problem and do not model view dependent specular highlights 

commonly found in MIS. 

 

Region matching registration [60, 147, 150, 163, 165] extracts salient regions of interest 

and attempts to match these regions between pairs of images. This approach is 

advantageous because it does not require the images to be processed sequentially or have 

large, overlapping image areas, thus making it well suited to loop closing. Region 

detection and matching approaches described earlier can be used. Based on the region 

matches between images, the motion transformation can be estimated using a 

minimisation algorithm such as Least Means Squared or Levenberg Marquardt. Regions 

on the surface of tissue may appear visually similar and outliers can be removed using 

global techniques such as RANSAC, assuming the scene is rigid. Unlike direct 

alignment, region matching registration requires the surface of the organ to have 

detectable regions of interest within the image and for said regions to be accurately 

matched. Regions close to specular highlights may be ignored. Region matching enables 

more sophisticated global optimisation due to its non-sequential performance ability. A 

significant drawback of Structure-from-Motion is error propagation caused by frame-to-

frame camera motion estimation. Small errors accumulate over time and can cause 

inaccuracies in the estimation of camera pose and structure. This problem can be 

addressed using global optimisation. 

 

Global optimisation refers to the use of batch operations, or bundle adjustment, to 

register multiple images together, remove error propagation, and find an optimal set of 

transformations. Bundle adjustment is an iterative method, which searches for a non-

linear model. To improve the chances of convergence, bundle adjustment is usually 
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initialised using estimations from a sequential approach. It generally is performed offline 

and is computationally expensive - making it inappropriate for online in vivo, in situ 

applications [60, 149, 164].  When used in applications such as post-operative diagnosis 

[151, 155, 162, 163], where high quality reconstructions may be beneficial, this extra 

offline computation does not pose a problem. Global registration provides an opportunity 

to ensure that loops are closed during navigation and the removal of specular highlights.  

 

Scene reconstruction may be performed once the camera motion has been estimated. 

Correspondences from the regions matched between frames can be projected into 3D and 

triangulated to estimate their 3D position relative to the camera. This requires camera 

calibration information, which can be obtained in advance of, or after, the procedure. 

Scene reconstruction creates a sparse set of points, which represent the tissue structure. 

These points can be meshed together to create a solid object onto which textures can be 

applied.  

 

Compositing determines the visual appearance of the 3D reconstruction. It is important 

to note that the surface is an approximation where alignment errors may be manifest, 

which, in turn, can cause blurring. Varied illumination in the images (caused by the point 

light source on the laparoscope) can also lead to visible seams, further disrupting the 

reconstruction. The compositing process includes mapping the pixels to the surface, 

selecting which images will contribute, and selecting how the pixels from these images 

will contribute to the final image. A variety of techniques have been proposed including 

sub-sampling, optimal seam selection, exposure compensation and multiband blending. 

These techniques have generally been developed to produce aesthetically pleasing 

results. For in vivo MIS applications, it is critical that techniques do not interfere with the 

current surgical field-of-view, this means incremental techniques must be registered to 

the current image. For post-operative diagnosis, it is important that when combining 

images, information that could affect the diagnosis is not removed.  

 

Structure-from-Motion is a well established technique; however, it has a number of 

draw-backs in its application to MIS. In vivo, in situ MIS applications require a 

sequential implementation, which leads to error propagation and drift. This limits the 

accuracy and long-term application of the technique for MIS. The work described above 

is based on the assumption that the MIS environment is static. Non-rigid Structure-from-

Motion has, thus far, been used for tracking faces [167, 168] and clothing [169]. This 



 61

technique is based on the factorisation method and shape basis representation. 

Conceptually, they are not suitable for real-time applications as the deformation is dealt 

with in an offline global optimisation step. Non-rigid Structure-from-Motion has also 

been applied to the heart [136]. However, it is used to deal with residual motion when 

constructing a static cardiac surface at a pre-selected point rather than a deforming 

surface during the cardiac cycle. 

 

2.3.3.2 Simultaneous Localisation and Mapping (SLAM) 

SLAM originated from research in autonomous robotic navigation: a detailed review of 

SLAM can be found in [170, 171]. SLAM was developed to solve two problems; 

consistent incremental environment mapping and localisation of a robot within a map. 

Prior to SLAM formulation, these problems were treated separately where either the map 

or robot location was assumed. This approach was unsuccessful as neither value could be 

assumed due to noise in sensor measurement. In [172], Smith, et al, present a seminal 

paper, which is credited with the development of the basic framework for simultaneously 

solving the localisation and mapping problem. This framework proposed the use of 

stochastic maps to represent the environment as a series of spatially related landmarks or 

features. A feature constitutes a position in the environment and a covariance matrix to 

model the positional uncertainty. Early work in SLAM on mobile systems used laser 

range finders [173], radar [174], sonar [175], and odometry sensors [174]. The 

framework has since been extended to work with stereo [176, 177] or monocular cameras 

[178].  

 

SLAM has not been widely applied to MIS. Current approaches have mainly been based 

on two systems; V-GPS [179], developed for robotic localisation, and monoSLAM 

[178], developed for localisation of handheld cameras. V-GPS is classified as a SLAM 

system because it incrementally and sequentially builds a long-term map of the 

environment whilst simultaneously estimating the pose of the camera. However the 

localisation problem is solved using a Structure-from-Motion approach based on 

corresponding points between two monocular images. This has been applied to the sinus 

[159, 180] where deformation and tissue motion is minimal. The monoSLAM system is 

closely aligned with the original formulation of SLAM presented in Smith, et al. A 

probabilistic framework is used to represent the state of the system and noise in sensor 

measurement. MonoSLAM was first extended to work with stereo cameras (Chapter 5) 
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for MIS and has recently been applied to the abdomen [145] and oesophagus [156]. In 

MIS, the goal is to localise the laparoscopic camera and build a map of the tissue surface. 

A typical feature-based SLAM system [178] is illustrated in Figure 2.10, which contains 

the following key steps: system initialisation, feature tracking, prediction, camera pose 

estimation and initialisation of new features.  

 

In [159, 160, 181], the V-GPS system builds a sparse 3D map of the sinus structure, 

which is registered to pre-operative CT. The motion of the camera is estimated between 

the current and next frame, similar to Structure-from-Motion. The intra-operative 3D 

sinus map has an arbitrary scale, and a scale invariant registration method is proposed for 

registration. The SLAM system contains the following steps: system initialisation, 

feature tracking, camera pose estimation, initialisation of new features, and registration 

to pre-operative data.  

 

In the system initialisation step, features are first identified in the image plane to form an 

estimation vector (projected from the camera centre through the image plan). The camera 

depth is calculated using an arbitrary scale using monocular images. Two system 

initialisation methods are proposed in [159, 160, 181]. The first is manual initialisation, 

which requires the user to select a point in the image space and the corresponding points 

in the pre-operative data. This, can be error-prone: visual correspondence is difficult. The 

second approach uses the eight point algorithm [182] to estimate the essential matrix 

(rotation and translation) between two images. This approach requires camera motion 

between the images. System initialisation creates a map of features on the surface of the 

sinus, which is then used to localise the endoscopic camera in subsequent frames. The 

map is stored as direction vectors with distance magnitude scaled relative to a camera 

pose but not as 3D positions in a world coordinate frame. 

 

The initialised features are temporally tracked in the 2D image space. The system is not 

specific to a feature tracking system. In [159, 160, 181], the authors track features on 

cadaver data by pre-processing the image with a gradient filter before finding 

correspondences using a sum of squared difference approach [117], which compensates 

for rotation, translation and illumination changes. Coloured spots are added to the 

surface for phantom data and are segmented in the hue plane for tracking.  
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The ego-motion of the camera is estimated between the two frames using the position of 

the tracked features in image space and the estimated distance magnitude. The approach 

[179] requires only three point correspondences between image frames. The camera 

motion is calculated by posing the problem as a least square-fitting problem solved 

iteratively by SVD. SVD estimates the rotation first and the translation between frames 

second. It requires initial estimates of rotation, translation, and depth of features from the 

camera. These are taken from the previous estimate or system initialisation, and SVD 

iteratively converges to an accurate estimate of these parameters. 

  

New features can be added once the system is initialised. An approach is employed that 

uses the rigid body assumption and estimates the depth of a new feature’s distance from 

the camera. This can be performed using the estimated ego-motion of the camera 

between two frames, or three frames for increased robustness. The depth of the new 

feature is estimated using the same scale as features in the existing map, thus maintaining 

a uniform scale. The 3D reconstruction is registered to pre-operative data in order to 

visualise the position of the endoscope in pre-operative. The resulting 3D reconstruction 

is only known up to an arbitrary scale, thus making registration difficult. The authors 

recovered the scale of the 3D map by comparing the relative structure of the map to that 

of the pre-operative model by computing the covariance matrix of point clouds to 

identify the dominant direction of the surfaces. The normalised eigenvectors were 

compared, and a rotation and scale transformation was computed to perform registration 

using Iterative Closest Point (ICP).  

 

The monoSLAM system, on the other hand, alternates between a prediction step, where 

the motion of the camera is blindly predicted, and an update step, where the map is 

measured relative to the camera. A vision SLAM system consists of a state vector, a 

probabilistic framework, feature initialisation, a prediction model, and a measurement 

model. 

 

The state vector contains the position of the laparoscope camera and a map of the tissue. 

The camera position is represented in the state by an XYZ position and roll, pitch, and 

yaw rotations. The state vector contains the velocity and angular velocity of the camera 

motion. The map is made up of the 3D XYZ position of a set of features or points. 

SLAM has been demonstrated with real-time performance in [178] wherein sparse maps 
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are generated, tracking up to 12 features at each frame with a total map size of 100 

features. 

 

The probabilistic framework in SLAM models the noise or uncertainty in the system. 

SLAM represents the joint probability between the features in the map and the position 

of the camera at a given point in time. It corresponds to the current estimate of the state 

and the associated uncertainty or noise. In MIS, [145, 156], the Extend Kalman Filter 

(EKF) has been employed which assumes Gaussian noise. In EKF, the uncertainty in the 

state estimates is represented in a covariance matrix as the variance from the estimate 

state. In the wider SLAM community, a variety of approaches have been implemented 

included Unscented Kalman Filters and Rao-Blackwellised particle filters (FastSLAM) 

[183, 184]. 

 

Features initialisation is specific to the optical configuration, monocular or stereo. In 

stereoscopic systems, features are matched in the stereo images. The 3D position of the 

feature is triangulated relative to the camera. In monocular systems, the 3D position is 

estimated by matching features temporally and partially initialising the feature using 

inverse depth, [145, 156]. SLAM ensures convergence of the map by employing a full 

covariance matrix between all features in the map.  

 

The prediction or motion model defines how the camera is expected to move. This model 

involves two elements; 1) the deterministic element - the motion is estimated based on an 

assumption or a sensor (e.g. odometry); 2) the stochastic element – this is a probability 

distribution represented by a collection of particles or Gaussian. It represents the 

unknown motion of the camera which is non-trivial to model. A constant velocity, 

constant acceleration motion model, assumes smooth camera motion. This assumption 

may not hold in both handheld MIS and robotic assisted MIS, thus leading to system 

failure.  

 

In the update step of SLAM, the measured state is compared to the predicted state. The 

measurement model provides a means of measuring the current system state. SLAM 

measures the location of the map features relative to the camera. The optical set-up 

defines the measurement model. In stereo SLAM, map features are measured in 3D using 

stereo feature matching and triangulation. In monocular SLAM, visible features are 



 65

projected into the image plane of the camera. Features are matched in image space and 

the measurement is performed in the 2D image plane.  

 

SLAM has been studied extensively in the past decade, and the research area is now 

relatively mature with many of the fundamental problems solved. Its success is largely 

due to its probabilistic foundations and real-time capability. The key advantage of SLAM 

over Structure-from-Motion is online, long-term consistent mapping. This prevents error 

propagation and drift, making it well suited to revisiting previously observed areas.  

 

Future research in the practical application of SLAM in MIS must focus on identifying 

more robust, long-term features, creating increasingly dense maps that cover larger areas, 

developing motion models better suited to rapid motion, recovering from failure, and 

incorporating information from additional sensors and robotic devices. The main 

challenge, however, is the theoretical treatment of deformation and dynamic soft-tissue 

motion. Within the wider vision community, SLAM has found application within non-

static civil environments where motion occurs due to people and transportation. Non-

static motions in the environment are treated as outliers, which can be identified using 

approaches such as RANSAC or Joint Compatibility Branch and Bound. These assume a 

global rigidity model and outliers are identified as features, which do not align with the 

rigid model. This approach requires part of the environment to be static, which may not 

be the case in MIS. The static environment assumption lies at the core of SLAM, yet 

removing this assumption is fundamental to the successful application of SLAM to soft-

tissue environments. 

 

2.4 Conclusion 

MIS is a well established practice due to reduced hospitalisation, patient trauma, and 

recovery time. However, there remain many instrumentation, ergonomic design and 

visualisation challenges. This chapter has discussed the clinical demand for IGI for MIS 

and the need for handling soft-tissue deformation. The requirements have been outlined 

for intra-operative deformation recovery for non-rigid registration of pre- and intra-

operative data. Meeting this requirement is complicated when the intra-operative 

imaging device is mobile. The current methods for estimating the position of endoscopes 

and laparoscopes in the operating theatres generally use additional hardware such as 
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electromagnetic trackers and optical tracking. Neither of these techniques is ideal 

because electromagnetic trackers suffer from interference, and optical trackers require 

line-of-sight and cannot be used for non-rigid devices such as endoscopes.  

 

Estimating the motion and position of an endoscopic/laparoscopic camera can be 

achieved using the images collected by the camera itself. This will be the focus of the 

thesis’ technical development: a challenging topic due to the visual appearance of tissue, 

and the potential for the robustness of the developed algorithms to be affected by a 

number of factors including small baseline stereo-optics, paucity of features, specular 

highlights, rapid camera motion, and large-scale tissue deformation. Estimating tissue 

deformation from a static laparoscopic camera is difficult, but the problem is further 

complicated when the laparoscope camera is mobile. In this case, motion observed by the 

laparoscopic camera may be a result of tissue deformation or camera motion, and they 

must be separated in order to enable accurate registration. 

 

In the following chapters, each key component of the proposed framework will be 

addressed, in turn. First the robustness of existing region descriptors for tracking 

deformable tissue will be examined and a new method proposed to boost its performance 

by fusing multiple descriptors. It will then be demonstrated how online learning methods 

can be used to identify unique, visual region characteristics that can be employed to 

further improve tissue-tracking performance. Finally, the use of SLAM for MIS will be 

investigated and a new formulation of SLAM proposed without the static environment 

assumption.  
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Chapter 3  
 

 

 

A Probabilistic Framework for 

Tracking Deformable Tissue 
 
 
 
 
 
 
 
The last chapter reviewed existing methods for tracking deformable tissue and outlined 

their current, respective technical difficulties. The purpose of this chapter is to examine 

the use of detect-and-match tracking techniques for estimating tissue deformation. State-

of-the-art-region descriptors are evaluated on MIS data and a supervised feature selection 

algorithm is used to systematically identify descriptors robust to deformation. A 

probabilistic framework is proposed for fusing the most discriminative descriptors to 

boost matching performance based on a Bayesian network. The performance of the 

proposed method is quantitatively evaluated on both simulated data and in vivo MIS 

data-sets.  

 

3.1 Tissue Tracking 

3.1.1 Region Descriptors and Matching 

As described in the last chapter, tracking-by-detection systems consist of a region 

detector, a descriptor and a chosen matching strategy. Generally, it is the region detector 

that models invariance to scale, and the descriptor encodes invariance to rotation and to 

deformation. A total of 21 descriptors have been evaluated on MIS data to examine the 

relative performance of state-of-the-art descriptors. These include nine descriptors, 
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which represent spatial information, and four descriptors, which represent colour 

information. Seven spatial descriptors have been extended to work in colour space using 

techniques outlined in [185]. These descriptors are listed in Table 3.1, Most of these 

descriptors, such as template matching and image moments, are widely used in image 

analysis. To be comprehensive, brief explanations of some complex descriptors are 

provided in this chapter. The source code for the descriptors is available at [186], [187], 

or was made available by the authors. 

 

 

Table 3.1 A summary of the region descriptors evaluated in this study. Colour descriptors are 
identified by a ‘C’ prefix. 

ID Descriptor 

CC, CCC Cross correlation, a 9×9 uniform sample template of the smoothed feature. 

MOM [188], CMOM Moment invariants computed up to the 2nd order and 2nd degree. 

DI [189], CDI Differential Invariants, Gaussian derivatives are computed up to the 4th order. 

SF [190], CSF Steerable Filters, Gaussian derivatives are computed up to the 4th order. 

Spin [191], CSpin 
Spin images, a 2D histogram of pixel intensity measured by the distance from the 

centre of the feature. 

GIH [192] 
Geodesic-Intensity Histogram, A 2D surface embedded in 3D space is used to create a 

descriptor which is robust to deformation. 

SIFT[124], CSIFT [193] Scale Invariant Feature Transform, robust to scale and rotation changes. 

GLOH [194], CGLOH Gradient Location Orientation Histogram, SIFT with log polar location grid. 

SURF [112] CSURF Speeded Up Robust Features, robust to scale and rotation changes. 

CCCI [195] 
Colour Constant Colour Indexing, A colour based descriptor invariant to illumination 

which uses histogram of colour angle. 

BR-CCCI [196] Sensitivity of CCCI to blur is reduced. 

CBOR [197] 
Colour Based Object Recognition, a similar approach to CCCI using alternative colour 

angle. 

BR-CBOR [196] Sensitivity of CBOR to blur is reduced. 
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3.1.2 Geodesic-Intensity Histogram (GIH) 

A deformation invariant descriptor is proposed in [192] where the image is treated as a 

2D distribution embedded in 3D space. Deformations are homeomorphisms between two 

images that allow pixel intensities to change location but not value. The descriptor is 

based on the Spin image descriptor, but Geodesic distance is instead used for calculating 

distances.  

  

On the embedded surface, the first two coordinates are proportional to the (x,y) 

coordinates in the image, and the third coordinate of the embedded surface is 

proportional to intensity, with an aspect weight α. The descriptor is built as a Geodesic-

Intensity Histogram (GIH) by sampling points on the embedded surface. The geodesic 

distance on the embedded surface becomes less sensitive to deformation as α increases. 

When α = 1, it is exactly deformation invariant as α controls the weight given to intensity 

and the image coordinates. A large value for α means intensity is more important than 

spatial information in the image coordinates. Therefore when α = 1, only intensity is 

considered. Since the surface is assumed to be homeomorphic it can be considered 

invariant to deformation.  

 

GIH differs from most descriptors because it does not compute a descriptor based on the 

size and shape of the region. Instead, it uses the detected region location as a starting 

point to define its own local support region. Geodesic-level curves are extracted around 

the local neighbourhood for a given α (the authors use 0.98) at set intervals. Points are 

then sampled at intervals along the curves. These sampled points are used to build the 

GIH in a similar manner to that of the Spin image. It should be noted that an assumption 

of the deformation as homeomorphic is not necessarily true, and specular highlights can 

cause problems. In addition, this approach requires well-defined local support regions 

with high contrast, which are not always available for MIS.  

 

3.1.3 Scale Invariant Feature Transform (SIFT) 

The Scale Invariant Feature Transform, or SIFT [124] descriptor, has been shown in 

[194] to perform well under large image transformations. It is one of the most cited 

works in relevant literature. It captures a large amount of information relating to spatial 

intensity patterns while being robust to small deformation and localisation errors. The 
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descriptor has been specifically designed to be invariant to rotation and scaling while 

being partially invariant to illumination. It is inspired by the neurons in the primary 

visual cortex, which respond to gradient at a particular orientation and spatial frequency 

but allow small positional shifts in the gradient. 

  

With SIFT, a region’s orientation is determined by computing the gradient magnitude 

and orientation for each point in the region. The scale of the region is obtained from the 

region detector, which is usually a Difference Of Gaussian (DOG). Detection is 

performed on images convolved with Gaussian filters of varying scales. The scale is 

determined as a local maximum in the filtered images across scales. The histogram of 

orientated gradients is computed on the filtered image associated with a given scale. 

Adjacent pixel difference is used to compute the gradient ( , )m x y  and orientation, 

( , )x yθ  for each image sample, i.e., 

 
2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y= + − − + + − −  (3.1) 

  
1( , ) tan (( ( , 1) ( , 1)) / ( ( 1, ) ( 1, )))x y L x y L x y L x y L x yθ −= + − − + − −  (3.2) 

 

An orientation histogram with 36 bins is used to represent the 360 degrees of possible 

orientation. Each sample point is added to the histogram weighted by its gradient 

magnitude along with a Gaussian window 1.5 times the scale of the region. This places 

emphasis on gradients at the centre of the region. The highest peak in the orientation 

histogram is taken to be the orientation of the region.  

 

SIFT explicitly models changes in orientation and scale making it robust to large image 

transformations. The use of tri-linear interpolation enables SIFT to cope with small 

deformations resulting from changes in view-point. The ad hoc decision concerning 

which image transformations to model, limits the application of this technique to 

deforming environments. Large spatial changes are not explicitly modelled, and in 

addition, SIFT assumes that changes in gradient are the most important information to 

encode. In MIS images, specular highlights and low contrast regions can affect the 

calculation of gradients and consequently, the robustness of the descriptor.  
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3.1.4 Gradient Location-Orientation Histogram (GLOH) 

Gradient Location-Orientation Histogram (GLOH) [194] is a variation of the SIFT 

descriptor which improves matching while maintaining the same descriptor 

dimensionality (i.e. 128). The gradient-orientation and magnitude are computed in the 

same manner as SIFT, however, the region is not divided into sub areas using a Cartesian 

grid: a log polar grid is used. The log-polar grid divides the region into eight bins in the 

angular direction and three bins in the radial direction. Although GLOH is more 

distinctive than SIFT, it requires an offline training phase using PCA to determine the 

dominant elements of the histogram. The use of PCA to remove less dominant elements 

of the histogram is context-specific and requires the training data to be an accurate 

representation of the test data [194].  

 

3.1.5 Speeded Up Robust Features (SURF) 

Speeded Up Robust Features (SURF) are presented in [112]. It is conceptually similar to 

SIFT but with a fast and simple implementation. A fast Hessian region detector is used to 

determine the orientation of the region and compute a descriptor based on Haar-wavelet 

responses. In order to define the orientation of the region, Haar-wavelets are used. The 

neighbourhood is taken as a circle with a radius six times the scale of the region. The 

wavelet responses are weighted with a Gaussian model and represented as vectors based 

on horizontal and vertical response strengths. This allows the dominant orientation to be 

estimated by calculating the sum of the responses with a sliding window. It has been 

demonstrated that, when combined with a fast Hessian region detector, the SURF 

descriptor can outperform SIFT and GLOH on images with changing viewpoints or 

scale. SURF can also handle image blur, changes in brightness, and JPEG compression.  

3.1.6 Colour Model 

Colour information can be combined with spatial information to improve descriptor 

performance. The spatial descriptors outlined above compute representations using 

intensity information only. The SIFT descriptor can be extended to work in the colour 

space as proposed in [193]. Other descriptors can also be extended, in a similar fashion, 

to work in a colour space as shown in Table 3.1. The colour model [193] is derived from 

the Kubelka-Munk model for physical reflectance. A Gaussian colour model is used to 

represent spectral and structural information. The spectral differential quotients are 

computed using a linear transform from Red, Green and Blue (RGB) space, and the 
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spatial differential quotients are computed using a Gaussian convolution. This colour 

model has been shown to be robust to shadow, changes in illumination, specular 

highlights, and noise.  

3.1.7 Colour Constant Colour Indexing (CCCI) 

Colour Constant Colour Indexing (CCCI) [195] is a technique developed to perform 

object retrieval using colour information alone. The approach is based on the work of 

Swain and Ballard [199], which is extended to be invariant to changes in illumination 

using the retinex theory. CCCI is able to cope with spatial variance in illumination, 

intensity, and colour. The descriptor outlined in [199] represents objects in a colour 

histogram that counts the number of pixels of a given value in opponent colour space. 

Colour histograms are well suited to representing deforming objects. They make no use 

of geometric or structural information and therefore can cope with changes in 

orientation, viewpoint, and non-linear deformation. During MIS, however, illumination 

varies spatially as a result of the point light source used. CCCI is selected due to its 

robustness to variation in illumination. The main drawback of the colour histogram 

approach is the assumption that colour is sufficient to distinguish different regions.  

3.1.8 Colour Based Object Recognition (CBOR) 

Colour Based Object Recognition (CBOR) [197] is a colour histogram descriptor which 

extends CCCI for 3D objects. The CCCI algorithm is invariant to changes in illumination 

and is based on the Mondrian, or flat world, assumption. This assumes that neighbouring 

locations in the image have the same surface normal. Such an assumption can be 

problematic for complex geometry exhibiting significant change in surface orientation. 

In [197], the authors propose a new colour constant ratio independent of illumination, 

colour variation, and surface geometry. The approach introduces a dichromatic reflection 

model, and the descriptor is based on the ratio of the surface albedo. CBOR is robust to 

spatial changes in the intensity and spectral distribution of illumination. The main 

strength of this method is its invariance to surface orientation; however, it is designed to 

work with narrow band images, white illumination and matt surfaces.  

 

3.1.9 Blur Robust (BR) Colour Ratios 

Blur Robust (BR) colour ratios [196] extend CCCI and CBOR, enabling them to work in 

with image blur. Colour constant image descriptors, such as CCCI and CBOR, are based 
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on image derivatives, the use of which make these methods sensitive to blur, which can 

be caused by rapid motion, out of focus, or rapid camera motion – all common influences 

during MIS. The colour ratios are computed using a Gaussian derivative at a given scale 

giving the ratios have an associated scale. The intrinsic robustness of the method is 

equivalent to robustness to changes in the scale of ratios. The application of the BR 

approach to the colour ratios of CCCI and CBOR results in BR-CCCI and BR-CBOR. 

 

3.2 Descriptor Selection and Fusion 

With such a large number of descriptors available, the key issue remains: how to select 

the appropriate descriptor for specific tracking applications. Some of the descriptors may 

provide similar information while others may provide complementary information that 

may be fused to enhance the overall quality of the tracking process. This section outlines 

an offline method for selecting a sub-set of the most discriminate descriptors and an 

online approach for fusing these descriptors to improve tissue tracking. The first step is 

to perform descriptor selection with known ground truth data. The method for acquiring 

the training data is outlined in Figure 3.1. Training data is acquired by detecting regions 

of interest on each frame in the sequence. Corresponding regions between the first frame 

and subsequent frames are identified by an expert user. In the following sections the key 

steps of descriptor selection and fusion will be explained in detail.   

 

Figure 3.1 Flow chart illustrating the six steps in the generation of training data from 
laparoscopic video data. A region detector is applied to each frame of the video, regions of 
interest are detected and descriptors are computed. Tracking is performed relative to the first 
frame and corresponding regions in subsequent images are manually defined.  
 

The purpose of descriptor selection is to identify a sub-set of the descriptors described 

above and to acquire the best tracking performance. This problem can be formulated 

within a machine-learning framework as feature selection. The aim of feature selection is 

to identify a small subset of features, or descriptors, that can be efficiently computed 
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without reducing the overall discriminatory power. This is achieved by eliminating 

irrelevant or redundant descriptors that contribute little to the classification accuracy. 

Feature selection can be performed by individual performance ranking or sub-set 

evaluation. Individual performance ranking can lead to redundancy making a sub-set 

evaluation approach preferable. A Bayesian Framework for Feature Selection (BFFS) as 

proposed by [200] is used.   

 

3.2.1 Bayesian Framework for Feature Selection (BFFS) 

The BFFS, illustrated in Figure 3.2, is a machine-learning algorithm formulated as a 

filter approach. It maintains the inference accuracy while reducing the complexity of 

multiple descriptors. The approach benefits from a descriptor selection that is based on 

data distribution rendering it unbiased towards a specific model. The BFFS defines a 

search strategy and an objective function to evaluate performance and can be 

implemented with either forward or backward search strategies. In forward search, the 

algorithm starts with an empty set and, in each iteration, the descriptor contributing the 

largest increase in discriminative power is added to the set. Backwards search starts with 

a set containing all descriptors and, in each iteration, the descriptor responsible for the 

smallest reduction in discriminative power is removed. It is determined [201-203] that 

backward elimination is less prone to feature interaction and is used in this thesis.  

  

Criteria for selecting optimal descriptors is based on the expected Area Under Curve 

(AUC) where the curve is the Receiver Operating Characteristic (ROC). The ROC curve 

describes the relationship between the sensitivity and 1 - specificity of a classifier, 

making the value of the AUC a direct measure of the descriptors. Within the BFFS 

framework, the expected AUC is taken to be a metric for the intrinsic discriminability of 

the descriptors classification performance.  

  

For clarity, sensitivity is defined as the ratio of correctly matched regions to the total 

number of corresponding regions between two images such that 

 
#

#

Correctly Matched
sensitivity

Correspondences
=  (3.3) 

 
1-specificity is defined as the ratio of incorrectly matched regions to the total number of 

non corresponding regions such that 
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#

1
#

Incorrectly Matched
specificity

Non Correspondences
− =  (3.4) 

 
wherein a region is defined as corresponding if it exists and is detected in both images, 

and a region is classified as correctly or incorrectly matched according to a matching 

strategy. In this work, threshold-based matching is used to compare different regions. 

Two regions are matched if the similarity between the descriptors is below a threshold. 

In keeping with [204],  the Mahalanobis distance is used to compare SF, CSF, DI, CDI, 

MOM, and CMOM. The Euclidean distance is used for SIFT, CSIFT, GLOH, CGLOH, 

SURF, CSUFR, CCCI, BR-CCCI, CBOR, BR-CBOR, GIH, Spin, and CSpin. 

 

The BFFS framework is based on the definition of irrelevance derived from Bayesian 

theory. Irrelevance is used as a metric in the objective function to remove descriptors that 

contribute little to the overall combined performance. This is based on conditional 

independence of the posterior probability  

 
(1) (1) (2)( | ) ( | , )P y P y=G G G  (3.5) 

where (1) (2)( , ) 0P ≠G G , (1)G  and (2)G  are sets of descriptors. This definition asserts 

that given (1)G  event y  is conditionally independent of (2)G .  

  

An alternative definition of relevance can be created using the likelihood ratio such that  

 
(1) (1) (2)( || , ) ( , || , )L y a y a L y a y a= ≠ = = ≠G G G  (3.6) 

 
This states that given (1)G  event y  is conditionally independent of (2)G  for any 

assignment of y a=  and (1) (2)( , ) 0P ≠G G where  

 
( | )

( || , )
( | )

P y a
L y a y a

P y a

=
= ≠ =

≠
G

G
G

 (3.7) 

 
Therefore the definition of the conditional independence of the posterior probability can 

be rewritten as,  

 

 
(1)

(1) (1

( | ) ( )

( | ) ( ) ( ) | ) ( )

P y a P y a

P y a P y a P y a P y a

= =
= = + ≠ ≠

G

G G
 (3.8) 
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which is equal to,  

 
(1) (2)

(1) (2) (1 (2)

( , | ) ( )

( , | ) ( ) ( , ) | ) ( )

P y a P y a

P y a P y a P y a P y a

= =

= = + ≠ ≠

G G

G G G G
 (3.9) 

 
therefore,  

 
(1) (1) (2)

(1) (1) (2)

( | ) ( , | )

( | ) ( , | )

P y a P y a

P y a P y a

= =
=

≠ ≠

G G G

G G G
 (3.10) 

 
The likelihood ratio is intrinsically linked to the ROC curve, which can be created by 

plotting the sensitivity and 1-specificity of a descriptor as threshold β of the likelihood 

ration (1)( || , )L y a y a= ≠G  varies. This can be used to derive an additional definition 

of irrelevance using the ROC. 

  

The likelihood ratio is equivalent to the slope of the ROC at a given value of β . 

Therefore, in accordance with [205], the sensitivity 
sen
P  and 1-specificity 

1 spec
P−  can be 

defined as  

 

( || , )

1 ( || , )

( | )

( | )

sen
L y a u a

spec
L y a u a

P P y a d

P P y a d

β

β

= ≠ >

− = ≠ >

 = = = ≠

∫
∫
G

G

G G

G G
 (3.11) 

 
such that, as the threshold β  is varied from 0 to ∞ , 

sen
P  and 

1 spec
P−  vary from 0 to 1. A 

definition of irrelevance may be created based on the ROC as 

  
(1) (1) (2)( || , ) ( , || , )ROC y a y a ROC y a y a= ≠ = = ≠G G G  (3.12) 

 
The ROC curve can be used to compare the individual performance of given descriptors, 

and the AUC can be used as a metric to evaluate their relative performance. The larger 

the AUC of a descriptor, the higher its discriminative power - although the shape of two 

ROC curves with equal AUC may vary. The AUC provides a metric for individual 

descriptor evaluation, however, within a fusion framework, the combined discriminatory 

power of the descriptors must be evaluated.  
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In order to evaluate the irrelevance in a multi-class situation, the expected AUC 

AUC
E can be used. It is observed that the ROC curve increases monotonically with the 

addition of descriptors. Therefore, if the discriminating power of  (1)G  and (2)G  

completely overlap (i.e. (2)G  cannot match any regions of interest that cannot be matched 

using (1)G ), then it may be removed without affecting the ROC curve or the AUC such 

that;  

 
 (1) (1) (2)( || , ) ( , || , )AUC y a y a AUC y a y a= ≠ = = ≠G G G  (3.13) 

 
irrelevance can be defined for the multi-class situation such that 
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Figure 3.2 Flow chart illustrating the use of training data to perform descriptor selection with a 
BFFS framework. The backwards search strategy is shown where the process starts with the set of 
all descriptors and iteratively removes the worst performing until the set contains one descriptor.  
 

3.2.1.1 BFFS Objective Function  

At each step in the descriptor selection framework, a descriptor 
i
d  is eliminated from the 

descriptor set ( )kG , resulting in a new set { }( )k

i
d−G . The eliminated descriptor 

i
d  

minimises the objective function ( )D d
i

. The performance metric is the expected AUC, 
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and the BFFS maximised performance by discarding, at each step, the most irrelevant or 

redundant descriptor that adds the smallest changes in the expected AUC. 

 

( ) ( ) { }( )( ) ( )k k

AUC AUC
D d E E d= − −

i i
G G  (3.16) 

 
where { }( ) ,  1 1k

j
j n kd= ≤ ≤ − +G  is the descriptor set at the beginning with k being 

the number of iterations, and the function ()
AUC

E  returns the expected AUC.  

  

Unlike irrelevant descriptors, which are uninformative, redundant descriptors may offer 

useful information despite having little impact on the expected AUC. Redundant 

descriptors may be discriminative in their own right but are correlated with another 

descriptor. It is preferable to retain these discriminative, redundant descriptors and 

remove uninformative, irrelevant descriptors as these redundant descriptors may perform 

well on test data. In the evaluation function of Equation (3.16) redundant and irrelevant 

descriptors are treated equally. This is because they both make a small contribution to the 

overall performance of the model. In order to retain redundant descriptors and discard 

irrelevant descriptors, the following objective function has been proposed: 

 

( ) ( ) { }( ) ( )( )

1 1
D 1 k

r i AUC AUC
d E d E dω ω= − − × − + ×

i i
G  (3.17) 

where the weighting factor 
1
ω  ranges between 0 and 1, [206]. This function minimises 

the discriminability of the eliminated descriptors whilst maximising the discriminability 

of the selected descriptor set.  
 

 

3.2.2 Probabilistic Descriptor Fusion for Tissue Tracking 

In order to combine the selected features together, a fusion framework as outlined in  

Figure 3.3 is proposed. The key component of this framework is a Naïve Bayesian 

Network (NBN) used to fuse the descriptors selected by the BFFS. This provides 

probabilistic fusion of the subset of descriptors that can be used for region matching. The 

NBN classifies two regions as either matching or not matching by fusing the similarity 

measurements between the descriptors and estimating the posterior probabilities.  
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Figure 3.3 Flow chart illustrating the steps in online regions tracking using descriptor fusion. In 
the tracking-by-detection framework a region detector is first applied. Image descriptors are 
computed for the detected regions and fused in a NBN to improved tracking performance. 
 

The NBN is a probabilistic classification technique that can fuse multiple sources of 

information. The NBN assumes all evidences are statistically independent and it 

classifies matching and non matching regions according to the posterior probabilities of 

the fused similarity measures. In accordance with Bayes’ theorem, the fused posterior 

probabilities can be estimated as: 

 

1 2

1 2

1 2

1 2

( , ,..., | ) ( )
( | , ,..., )

( , ,..., )

( , ,..., | ) ( )

k

k

k

k

P D D D C P C
P C D D D

P D D D

P D D D C P Cα

=

≈
 (3.18) 

 

where 
1
, ,

k
D D…  are the distance measurement between the two regions, k  is the 

number of descriptors selected by the BFFS, C  is the hypothesis of match or non-match, 

and α denotes the normalising constant. If all the descriptors are statistically 

independent, Equation (3.18) can be rewritten as 

 

1 2 1 2
( | , ,..., ) ( ) ( | ) ( | ),..., ( | )

k k
P C D D D P C P D C P D C P D Cα≈  (3.19) 

 
where ( | )

k
P D C  is the conditional probability of evidence 

k
D  given hypothesis C . 

Equation (3.19) formulates the posterior estimation of the NBN, and can be modelled 

using a Directed Acyclic Graph (DAG) as shown in Figure 3.4.  
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Figure 3.4 DAG visualisation of a NBN for descriptor fusion for classifying a region. The DAG 
contains nodes representing descriptors D and classification C. The nodes are joined together by 
directed arcs which represent the conditional probability between the nodes. 
 

3.3 Experiments and Results 

The above descriptor selection and fusion framework is evaluated with both simulated 

and in vivo data. The chosen sequences exhibit large tissue deformation resulting from 

instrument-tissue interaction. In essence, the proposed framework can be categorised as a 

tracking-by-detection approach. The framework’s ability to increase the number of 

correctly tracked regions, and their persistence with respect to tissue deformation, is 

evaluated in addition to its capability to reinitialise tracking after failure. 

 

The quantitative evaluation herein performed involves three metrics, descriptor 

sensitivity, 1-specificity (results are presented in the form of ROC curves), and detector 

repeatability. The sensitivity or recall is computed according to [114] and [204] and 

Equation (3.3) where correspondence is the number of regions of interest that are 

successfully redetected at each frame, and thus, have the potential to be matched. This 

method, of computing the number of correspondences, ignores the repeatability of the 

region detector, enabling the descriptors’ performance to be evaluated independently. 

Sensitivity is a measure of the density of tracked regions: a good region tracker will have 

high sensitivity. 1-specificity is the ratio of incorrectly matched regions to the number of 

non-corresponding regions as defined in Equation (3.4) Non-correspondences are 

regions that are not redetected by the region detector or fall outside of the current field-

of-view. In general, a good region tracker will have low (1-specificity) values. 
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Figure 3.5 Simulated data. An image, acquired during a laparoscopic cholecystectomy illustrating 
the gall bladder and liver, is textured onto a 3D deformable mesh. The mesh is deformed with a 
mixture of Gaussians. (a-f) Show the deformed surface used to validate the tracking algorithm. 
 

(a)                                                                             (b) 

(c)                                                                            (d) 

(e)                                                                              (f) 
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3.3.1 Simulated Experiments 

The simulated sequence for evaluating the performance of the proposed method is shown 

in Figure 3.5. The data-set is generated by texturing a 3D mesh with a real laparoscopic 

image showing the gall bladder, liver and cystic duct. The 3D mesh is deformed with a 

Gaussian mixture model and noise is added to the image. The parameters of deformation 

were selected to create images that visually replicate tissue deformation resulting from 

tissue-instrument interaction. The total length of the data stream is 100 frames. Points are 

tracked on the surface of the mesh at 10 frame intervals and re-projected onto the image 

plan to provide a ground truth data-set.  

  

The results from the BFFS descriptor selection framework are shown in the AUC graph 

in Figure 3.6 (f). The AUC curve indicates the descriptor IDs of the top performing 

descriptors in descending order. The most discriminative descriptor, based on the 

training data, is Spin, and it is evident that the overall discriminability of the system is 

improved by incorporating additional descriptors. The framework selects a subset (Spin, 

GIH, CSIFT, SIFT, GLOH, SURF and CGLOH) of the 21 descriptors. The order of the 

selected descriptors does not directly correspond to the descriptors’ individual 

performance: note the order is defined by how much additional information the inclusion 

of a descriptor creates. This is demonstrated by the inclusion of the CSIFT descriptor 

before the SIFT descriptor. The individual ROC analysis of the two descriptors in Figure 

3.6 (a) and Figure 3.6 (c) shows that SIFT outperforms CSIFT. The inclusion of CSIFT 

substantiates its ability to providing new information that is not captured by the Spin, 

GIH, or SIFT.  

  

The performance of the descriptor fusion framework is evaluated using ROC curves 

shown in Figure 3.6 (a-e). The ROC curves represent time-collated data and provide a 

simple metric of performance for the duration of an entire video sequence. The fused 

descriptor is shown graphically as point Fn where n represents the number of additional 

descriptors (i.e. F1 is Spin and GIH). The graphs illustrate, for an acceptable specificity, 

descriptor fusion can obtain a higher level of sensitivity than any individual descriptors. 

This enables the fusion technique to match more regions robustly. The top performing 

individual descriptor is Spin. For the level of specificity achieved with fusion F5, Spin’s 

sensitivity is 11.96% less making its region density lower. Alternatively, to obtain the 

same level of sensitivity achieved with descriptor fusion, specificity must be 
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compromised. With the Spin descriptor, this results in an increase of 19.16% and a 

reduction in region matching robustness. However, in this data-set, not all of the nF  

fusions offer an overall improvement. It has been shown that: 1) the addition of more 

descriptors, whilst theoretically improving performance, may not improve actual 

performance; and 2) not all descriptor fusions outperform individual descriptors. The 

former is demonstrated in the data by F2 outperforming F3. The latter is evident in the 

performance of F1, which is below the ROC curve of several individual descriptors. 

These issues are attributed to differences in the training data and the test data. However, 

it should be noted that the chosen fusion data-set, F5, has out-performed all individual 

descriptors.  

  

The performance of individual descriptors varies. It was found that Spin, GIH, SIFT, 

SURF, and GLOH performed well on the detected regions. However, all descriptors 

converted to work in colour space performed unsatisfactorily compared to the original 

descriptors. The colour space is designed to enable descriptors to discriminate between 

significantly different colours (e.g. red and blue). In MIS the variance in colour is small 

and colour descriptors cannot easily distinguish between small changes in colour. 

Although the performances of colour descriptors were inferior, these descriptors still 

provide useful information in the fusion framework.  

  

The colour histogram descriptors are evaluated in Figure 3.6 (e). These descriptors do 

not contain structural information and only use colour to represent the region. It is clear, 

as indicated by the ROC curves, that these are the most inferior performing descriptors. 

Their performance is close to 1sensitivity specificity= − . The descriptors with blur 

reduction perform marginally better. These results demonstrate that colour information 

alone does not contain sufficient variance to discriminate between different local regions 

in MIS data.  
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Figure 3.6 Simulated data. (a-e) ROC (sensitivity vs. 1-specificity) graphs for individual 
descriptors and fused descriptors F1-F5. The matching threshold is varied to obtain the curves. (f) 
AUC graph generate by BFFS selection framework. 
 
 

 

 

(a)                                                                           (b) 

(c)                                                                           (d) 

(e)                                                                           (f) 
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                                  (a)                                                                           (b) 
Figure 3.7 Simulated data. (a) Detector repeatability and (b) sensitivity of fused descriptors with 
respect to time.  
 

The proposed descriptor fusion framework is evaluated further with respect to time and 

deformation in Figure 3.7 (a-b). The ROC curves provide a simple metric for evaluating 

performance of the entire video sequence. However, it does not show changes in 

performance over time. Figure 3.7 (b) shows the sensitivity over time for the descriptor 

fusion framework. On this graph, a clear pattern is visible with three peaks and two 

troughs. The troughs correspond to extreme deformation, and the peaks correspond to 

images that are visually similar to the first image and exhibit a small amount of 

deformation. It is evident that the tracking performance is compromised during 

deformation. The proposed fusion approach successfully increases the number of regions 

that can be tracked. This graph also demonstrates how the tracking-by-detection 

approach is capable of reinitialising tracking after failure. However; this graph and the 

ROC curves, are computed without taking the repeatability of the region detector into 

consideration.  

 

The repeatability of the region detectors is shown in Figure 3.7 (a). The average 

repeatability of the detectors is 56.9%, which is lower than desired. The repeatability of 

the detectors is affected by surface deformation, the projection of the texture onto a 

curved surface and a small-scale change introduced by the simulation and addition of 

noise. A similar pattern of performance is observed in the sensitivity graph in Figure 3.7 

(b). Performance corresponds to deformation where repeatability is higher when less 

deformation is exhibited and lower at the extremes of deformation. This has a 

compounding effect on the region-tracking density. It is observed that regions not 

redetected are those undergoing the largest deformation and, therefore, will be the 

hardest to match using the descriptors.   
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3.3.2 In Vivo Experiments 

Figure 3.8 shows an in vivo sequence from a laparoscopic cholecystectomy procedure. 

The sequence consists of 1700 frames, and the ground truth data is defined by an expert 

user at 100 frame intervals. A total of 40 regions of the tissue surface were matched 

throughout the sequence. Only regions of the tissue in contact with the tools were 

selected. Specular highlights are identified by a threshold in the saturation channel, and 

regions of interest near specular highlights are ignored.  

  

The AUC graph for in vivo descriptor selection using the BFFS framework is shown in 

Figure 3.9 (f). The BFFS identifies GIH as the most discriminant descriptor and the best 

subset includes (GIH, SURF, Spin, SIFT, GLOH, CC). This set is similar to the set 

identified in the simulated data. Once again, it is evident that additional descriptors can 

improve the overall tracking performance. GIH and Spin share similar approaches and 

GIH can be seen as an extension of Spin. Figure 3.9 (a), demonstrates their performance 

on this data-set as similar, and both outperform SURF. However, the BFFS framework 

prioritises SURF above Spin, illustrating that the feature selection prioritises contribution 

to overall performance above redundant data.  

 

It is evident from the graphs in Figure 3.9 (a-e) that descriptor fusion improves the 

overall discriminative power of descriptors. The fused descriptors, F5, obtain a 

specificity of 0.235, this is a 30.63% improvement in sensitivity over GIH (the best 

performing descriptor) at the given specificity. This shows that the descriptor fusion 

framework is capable of matching more regions than any individual descriptor for 

deforming tissue. For this data-set, the five fused descriptors F1-F5 all outperform the 

individual descriptor performance in sensitivity and (1 –specificity).  

 

In Figure 3.9, the fused descriptors F3, F4, and F5 are tightly clustered in the top left of 

the ROC graph indicating a good performance. It can be seen from F3 to F5, there is a 

decrease in the 1 - specificity and, therefore, a reduction in the number of mismatched 

features. However, this is accompanied by a reduction in sensitivity. This implies that the 

inclusion of GLOH and CC prevents erroneous matching at the expense of sensitivity. 

The variance in sensitivity and (1 – specificity) between F3, F4, and F5 are small, and the 

tight clustering suggests that a good result can be achieved with F3, which includes four 

descriptors.  
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.  

Figure 3.8 In vivo data. (a-e) A selection of laparoscopic images collected during a laparoscopic 
cholecystectomy. The images show deformation resulting from tissue-tool interaction. (e-f) Show 
local deformation of a region of interest. 

(a)                                                                            (b) 

(c)                                                                            (d) 

(e)                                                                          (f) 
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Figure 3.9 In vivo data. (a-e) ROC (sensitivity vs. 1-specificity) graphs for descriptors. (f) AUC 
graph generated by BFFS selection framework. 
 

(a)                                                                            (b) 

(c)                                                                            (d) 

(e)                                                                                    (f) 
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For this in vivo data-set, the relative individual performance of the descriptors is similar 

to that of the simulated data. The best performing descriptors are Spin, SIFT, SURF, 

GIH, and GLOH. These approaches encode structural information. Once again, when 

modified to work in colour invariant space, they perform worse than the original 

descriptors. The reduction in performance, however, is more pronounced than the 

simulated data. This is attributed to the complex illumination conditions in MIS. The 

colour histograms CBOR, BR-CBOR, CCCI, and BR-CCCI perform poorly and, at some 

points, drop below the line of 1sensitivity specificity= − . The images from the in vivo 

sequence are shown in Figure 3.8, and it is evident that regions of interest on the tissue 

surface do not have unique colour distributions to allow for consistent tracking.  

 

Figure 3.10 (b) shows the sensitivity performance of the descriptor fusion framework 

with respect to time. It can be seen that F1 to F5 perform relatively well with small dips 

in performance when deformation is increased. However, the repeatability of the 

detectors shown in Figure 3.10 (a) is low. At the end of the sequence, the repeatability is 

below 0.4 and more than 60% of the regions are no longer trackable. Low repeatability is 

caused by tissue deformation and changes in scale, illumination, and surface artefact due 

to bleeding and specular highlights.  

 

 
                                         (a)                                                                             (b) 
 
Figure 3.10 In vivo data. (a) Detector repeatability and (b) sensitivity of fused descriptors with 
respect to time. 
 
The practical value of the proposed framework is further demonstrated in Figure 3.11. 

The fused descriptor F5 is used to track an in vivo sequence collected during a lung 

lobectomy procedure performed with the da Vinci robot. A 3D reconstruction of the 
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scene is generated using the stereoscopic laparoscope: camera calibration is carried out 

prior to the procedure. Regions of interest are detected in the first frame of the video and 

matched across the entire image sequence for temporal deformation recovery. Only 

regions that are successfully tracked through both time and space are used for 3D depth 

reconstruction. The sparse 3D reconstruction is overlaid on a dense reconstruction, 

created using only the stereo images without temporal tracking to provide a context for 

the tracking. The fused method is compared with that of the SIFT descriptor as a 

baseline. The SIFT features are matched using the nearest neighbour ratio matching. It is 

evident that the proposed fusion method has greater temporal persistence and density.  

 

3.4 Discussions and Conclusion 

This chapter has investigated the use of vision-based tracking algorithms to estimate 

tissue deformation in MIS. A probabilistic framework based on tracking-by-detection is 

proposed. Quantitative evaluation of the performance of selected state-of-the-art image 

descriptors has been performed and a selection framework proposed for determining the 

best-performing descriptors for MIS sequences. Descriptor selection is executed prior to 

tracking in an offline training phase where descriptor performance is quantitatively 

evaluated with known ground truth data. The relative performance of the descriptors is 

computed with the BFFS to create sub-groups of complementary descriptors with 

increased discriminative power. The sub-group of descriptors is then fused online using a 

Bayesian network to improve overall tracking performance. The performance of the 

proposed framework is quantitatively evaluated on both simulated and in vivo data-sets. 

 

Tracking-by-detection removes the assumption of temporal persistency; however, it 

requires the application of a region detector at each frame. This chapter has shown that 

region tracking can be re-initialised after failure. This is important in MIS because 

tracking failure can be caused by occlusion due to surgical instruments. Although 

deformation is generally not explicitly represented by image descriptors, this framework 

is capable of boosting tracking performance with increased density and persistence 

compared to conventional approaches. This represents a step towards making efficient 

and effective use of visual cues for deformation recovery.  
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Figure 3.11 (a-d) Laparoscopic footage of tissue deformation resulting from tool interaction. The 
footage was acquired during a robotic assisted lung lobectomy procedure. 3D deformation 
tracking and depth reconstruction based on computational stereo. (e-f) Descriptor fusion and (g-h) 
SIFT. SIFT was identified by the BFFS as the most discriminative descriptor for this image 
sequence.  

(c)                                                                            (d) 

(e)                                                                            (f) 

(g)                                                                           (h) 

(a)                                                                           (b) 

SIFT 

Fusion 
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The presented results demonstrate how the repeatability of region detectors was not 

sufficiently high to ensure continuous tracking. This may be improved in practice via 

manual parameter tuning; however, the variation in visual appearance of soft-tissue 

renders these parameters context-specific. The current framework is based on pre-

defined image descriptors, which make ad hoc decisions concerning what information 

will be used for matching. Although the selection framework identifies which descriptors 

are the most informative, the capability of the system is limited by the pre-defined 

descriptors. The next chapter proposes a systematic framework for automatically 

identifying context specific information online.  
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Chapter 4  
 

 

 

An Online Learning Approach to 

Tissue Tracking 
 

 

 

 

 

 

 

In the previous chapter a method was described for tracking tissue to recover 

deformation from laparoscopic images. This method used a supervised machine learning 

approach for optimal descriptor. The research-findings demonstrate the feasibility of 

using a learning framework to improve region tracking. It demonstrated that learning 

discriminative visual cues and fusing information can increase the overall tracking 

performance with respect to sensitivity and specificity.  

 

In Minimally Invasive Surgery (MIS), however, the appearance of the surgical scene 

varies greatly and is subject to constant change. In this case, the descriptors selected 

offline may not provide the optimal performance. To ensure region density and 

persistency it is necessary to learn the visual representations online and to adjust the 

tracking process appropriately. The purpose of this chapter is to present an algorithm 

which adapts to the scene context, learns a representation for deformation, and is robust 

to drift, occlusion, scaling, rotation and artefacts (such as smoke resulting from 

diathermy during MIS). 
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4.1 Introduction 

The work presented in the last chapter explored which subset of descriptors yields 

optimal performance. An alternative methodology is to learn what makes a region 

distinguishable from surrounding regions of interest. This approach has been used in 

handwriting recognition [207], image classification, object detection [113] and corner 

detection [208]. These approaches pose the region-matching problem as a classification 

issue and consequently require training sets. PCA and kernel PCA are used to provide 

efficient representation of the objects offline prior to tracking [209-212] or with online 

adaptation [213]. It is not possible to generate training data in advance of an MIS 

procedure, and offline training is non trivial. This leaves an online training approach and 

the matter of how to deal with in vivo situations, such as those shown in Figure 4.1, 

where tissue undergoes non-linear deformation, has repetitive texture or pattern, or is 

occluded by specular highlights.  

  

 
                       (a)                                                    (b)                                                (c) 
Figure 4.1 Specular highlights, non-linear tissue deformation and variation in the visual 
appearance of tissue makes tissue tracking challenging. A segment of the liver is shown in (a) 

with repetitive surface pattern. Non-linear tissue deformation on the cardiac surface is shown in 
(b) with occlusion caused by specular highlights. Tissue deformation resulting from respiration is 
shown in (c).   
 
In this chapter a method for learning robust representations for regions is described. To 

demonstrate the practical and clinical application this method is used to extract the 3D 

motion of tissue. The intrinsic components of the tissue motion are extracted into 

respiration and cardiac motion which is subsequently modelled.  
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4.2 Learning Region Descriptors  

As previously mentioned, region tracking during MIS is influenced by the non-linearity 

of tissue deformation, changes in scale and orientation, and variation in lighting and 

occlusion. In addition, MIS is affected by organ appearance, which may lack distinctive 

anatomical landmarks (e.g. surfaces of liver and kidney). The ability to track a region 

successfully is governed by how distinguishable it is from surroundings regions. This is 

largely determined by the representation of the region, which consists of two elements: 

1) what information is encoded and 2) how the information is encoded. For the former, 

such information includes colour, edges, lines, corners, scale, orientation, intensity, 

texture, and gradient. This information should contain sufficient variance to enable 

regions to be distinguished whilst allowing them to undergo changes in appearance due 

to image transformation. For the latter, information may be encoded as probability 

density histograms, histograms of gradients, templates, points, contours, and active 

appearance models. A successful encoding method should represent the relevant and 

discriminative information whilst ignoring irrelevant data. 

 

The choice of the matching strategy is closely related to the encoding method. The 

matching strategy is a means of ascertaining whether a region exists in a new image by 

comparing the encoded information of a region with encoded information from a new 

image. The matching strategy includes how the encoded information is compared (e.g. 

cross correlation, minimisation, earth mover distance, and sum of squared difference) 

and how a match may be determined (e.g. threshold, nearest neighbour, or nearest 

neighbour ratio). 

 

The choice of what information to encode and how it is represented can be context-

specific. As shown in [120], colour information can provide sufficient variance between 

an object and its background such that a deformable object can be tracked using mean-

shift. In [214], the Lucas Kanade (LK) tracker encodes structural information assuming 

brightness constancy, temporal persistence, and spatial coherence. By constantly 

updating the encoded information, the temporal persistence assumption can be 

maintained, thus enabling tracking using a variety of image transformations. As 

described earlier approaches such as Scale Invariant Feature Transform (SIFT) [124] 

detect scaled regions and encode gradient information as spatially oriented histograms 

and imposes geometric constraints on the visual appearance of regions. This makes ad 
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hoc assumptions about the most discriminative information and how to best encode it. 

Assumptions are also made regarding what type of image transformation the encoded 

information will be invariant to. These methods perform well when the underlying 

assumptions hold; however, as described above, the MIS environment is subject to 

constant change, and ad hoc modelling of tissue appearance can be problematic.  

 

An alternative approach is to learn what makes a region distinguishable from its 

surroundings, what information is most discriminative, and how best to encode and 

match the region (this learning approach was discussed in the previous section). These 

methods require offline learning, access to prior information or knowledge of expected 

image transformations. In addition, robust estimators commonly used to remove outliers 

during matching are needed. The method proposed in this section identifies the most 

discriminative information for tracking a specific region and updates adaptively as the 

tracking process progresses. Training data is extracted online by bootstrapping an LK 

tracker and synthetically generating data. This enables the approach to accommodate 

unknown tissue deformation and standard image transformations such as scale and 

rotation. The proposed algorithm consists of six main steps as shown in Figure 4.2: 1-2) 

region tracking is initially performed using a LK algorithm and, subsequently, the online 

approach, 3) generation of synthetic data, 4) building the online tracker and learning a 

representation for a region, 5) adapting and updating the region representation, and 6) 

tracker evaluation. 

 

4.2.1 Building the Online Tracker 

The region tracking problem can be formalised as a classification problem [113, 213] 

within the learning framework. The aim is to classify a given region in a new image as a 

true match and classify all other regions as false. Training the classifier requires a set of 

data with true and false labels. To this end, the data can be represented as a set of image 

patches which can be acquired via either manual labelling for offline learning or, if the 

appearance of the region can be well modelled, synthetically generating data. In this 

chapter, the method combines online learning with synthetically generated data to 

improve robustness to tissue deformation and changes in scale and orientation.  
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4.2.1.1 Online Training Data Generation 

This approach proposes to extract the training data for non-linear tissue deformation 

online while the regions are tracked and learnt from unlabeled data. It is shown in [89] 

that an LK tracker may be used to track regions on the deforming surface of the heart 

across cardiac cycles before eventually succumbing to drift. Regions are initially tracked 

on the surface of the tissue using an LK tracker thus creating a set of training data, which 

contains non-linear tissue deformation examples, and enables the learning of local 

deformation online. The set of false labelled data could be obtained by taking patches 

centred on every pixel in the image, which is not the region; however, this would create a 

set of training data which is computationally expensive to process. Instead, the set of 

false labelled data is obtained by randomly selecting patches and performing a local 

template matching to find similar regions. The true and false labelled data is added to a 

training set called S  

 

4.2.1.2 Synthetic Training Data Generation 

Synthetically generated data, used to model non-linear transformation, is particularly 

useful given current progress made in high-fidelity physical and appearance-based 

modelling. Simple projective image transformations include scale, rotation, skew, and 

perspective. For each image patch extracted in the online learning phase, four warp 

functions are individually applied to generate additional synthetic data. It should be 

noted here that the tracker will be updated online as the tracking process progresses. It is 

not necessary to apply an exhaustive set of transformations, rather, only a subset of 

transformations that are temporally persistent are applied. Rotational transformations 

used in this study range from -45° to 45° at 2° intervals. The scale transformations are 

applied from a factor of 0.8 to 3, thus enabling the tracker to handle similar 

transformations to [124]. The transformed patches are added to the training set S  with a 

true label. Since synthetic data is used to build the classifier, note that initialising with an 

LK tracker is not required under these transformations.  

 

For appearance based modelling, synthetically generated images with diathermy-induced 

smoke are used. The online learnt tracker is robust to occlusion; however, translucent 

smoke causes the visual appearance of tissue to change and region tracking to fail. 

Accurate modelling would require the detection of the smoke source location in 3D, 

estimation of the smoke density, and a 3D model of the peritoneal cavity with knowledge 
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of the input and output of carbon dioxide in the cavity. The use of a practical smoke 

model is proposed to model the effect of surgical smoke on the visual appearance of 

tissue. The model comprises three variables; colour, density, and 2D spatial distribution 

of smoke. These variables are combined in Equation (4.1)-(4.3) with the original pixel 

values from the image, in order to synthesise the visual appearance of smoke: 

 

'
* (1 )

r r r
P s P s C= + −  (4.1) 

'
* (1 )

g g g
P s P s C= + −  (4.2) 

'
* (1 )

b b b
P s P s C= + −  (4.3) 

 
where 

r
P is the original red component of the pixel, 

r
C  is the colour of the smoke (a 

random variable of Gaussian distribution with mean of 0.6 and standard deviation of 

0.1), s  is a random variable representing smoke density, and 
'r

P  is the transformed red 

component of the pixel. In this study, three different smoke density distributions are used 

with means 0.15, 0.25, and 0.4 with standard deviations of 0.05. These values are chosen 

because they represent translucent smoke. Values below 0.1 have little effect on visual 

appearance while those above 0.5 may result in occlusion. A Gaussian filter is applied to 

the resulting images to create smooth spatial distribution as illustrated in Figure 4.3. A 

training data with true and false labels can subsequently be generated and added to S .  

 

4.2.2 Training the Classifier 

Training the classifier for region tracking is equivalent to determining what information 

needs be encoded. The training process will learn the most discriminate information for 

classifying both true and false matches correctly. Given the labelled set of training data 

S , the classifier is trained to partition S  into two sets; 
t
S and 

f
S , representing true and 

false matches. It has been shown that decision trees [113] can be used to effectively 

partition image patches into sets. Within this research, an ID3 [215] decision tree is used 

to iteratively partition S . A test is selected at each step in the tree generation, which 

partitions the set and creates a junction in the tree. The selected test is the one which best 

partitions the set S  and determines what information is valuable for encoding.  
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                                 (a)                                                                        (b)                                         

      

                                 (c)                                                                          (d) 

Figure 4.3. The visual effect of smoke modelling based on Equation (4.1)-(4.3). (a) Original 
image, (b) 0.15s =  , (c) 0.25s =  and (d) 0.4s =  where s  is variable representing the 
modelled smoke density. 
 

This technique is different from many tracking techniques where either ad hoc decisions 

are made regarding what information is encoded or all information is treated equally. 

Each test examines a pair of pixels for every patch in set S . The test identifies if the first 

pixel is greater, similar or less in value than the second pixel and puts the patch into one 

of three subsets according to the result. A selection criterion function is used to identify 

the test or pair of pixels which best partitions the data. The selection criterion function 

should provide the maximum information allowing the entropy of each subset to be 

measured such that; 

 

2 2 2
( ) log log log

t t f f
H S S S S S S S= − −  (4.4) 

 
The optimal selected test is the subset where entropy is zero or the test with minimum 

entropy. The stopping criterion for tree building is zero or repeated minimum entropy.  

 



 101

The optimal test can be found by using an exhaustive search strategy: an approach that 

can be computationally prohibitive for large data-sets. Given a patch of size *j x y= , 

and a set of patches S  of size k , an exhaustive search requires up to ( 1) * / 2 *j j k−  

operations. This performance can be improved by sub-sampling j  and k , however, this 

can deteriorate performance. Instead, a search step is introduced without the / 2j  

component, which identifies the distribution of pixel at individual locations. This step 

searches for individual pixels in the set S , which yield a good separation between the 

sets 
t
S and 

f
S . These pixels are more likely to result in tests that provide optimal 

partition. A selection criterion is required to identify intra- and inter-class variance. 

Linear discriminant analysis may be used if the distribution of the sets is uni-modal, as 

illustrated in Figure 4.4 (a), however, as shown in Figure 4.4 (c), the distribution can be 

multimodal. It is proven in [216] that the log likelihood ratio is well-suited to the 

evaluation of multimodal distributions. At each pixel location, two histograms are 

created, ( , )t x y  and ( , )f x y , which correspond to 
t
S and

f
S . The log likelihood is 

computed  

  
max( ( , ), )

( , ) log
max( ( , ), )

t x y
L x y

f x y

δ

δ
=  (4.5) 

 
where δ  is set to be 0.001 avoiding dividing by zero. The variance ratio of the log 

likelihood is used to measure the intra- and inter-class variance, i.e. 

 
var( ;( ) / 2)

( ; , )
[var( ; ) var( ; )]

L t f
V L x y

L t L f

+
=

+
 (4.6) 

 
where  

 

( )
2

2var ;( ) ( ) ( ) ( ) ( )
i i

L a a i L i a i L i
  = −    

∑ ∑  (4.7) 

 
given the discrete probability density function

i
a . This selection criterion function 

rewards low intra-class variance and high inter-class variance by identifying pixels with 

good separability. Using pixels with low intra-class variance and high inter-class 

variance, Equation (4.5), is used to identify the optimal test.  
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4.2.3 Region Matching  

In this thesis, two strategies have been considered for identifying the position of the 

region in a new frame: 1) detect and match - a region detection step extracts regions of 

interest for evaluation, and 2) exhaustive search - a region of the image is exhaustively 

searched by evaluating an image patch around each pixel. It is computationally efficient 

to evaluate regions and, therefore, an exhaustive search approach is appropriate. An 

exhaustive search method is also more conducive to continuous tracking as it is not 

susceptible to the repeatability of the region detection method.  

 

To identify the location of a region in a new image frame, a patch centred on each point 

in a search region is classified using the decision tree. The search area of a fixed size was 

used with a Gaussian kernel weighting centred on the previous known position. This is 

an effective approach, however, in order to ensure the new position is within the search 

area, an oversized area was chosen.  

 

The classification of patches in the search region can be performed quickly as the tests 

are simple and the false matches can be readily identified with only a few tests. It is 

common for more than one true match to be identified by the classification process. 

Matches are usually clustered within a few pixels of the true position of the region. This 

is due to the training data containing examples of the patch undergoing image 

transformations. The region is localised by examining the probability distribution, 

1

( )
j tj t

P N S S
−

= , at the tree node,
j

N ,to determine if it is a correct match, where 
tj
S  

is the number of true matches classified by node j , and 
t
S is the number of true 

matches classified by the entire tree. The best candidate point, 
,x y

p , in the search area is 

selected. 
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                                    (c)                                                                             (d) 

Figure 4.4 Hypothetical example distributions of training data-sets 
t
S (green) and 

f
S (blue) used 

to create the classifier. (a) Uni-modal distribution with low intra-class variance and high inter-
class variance, (b) distributions with high intra-class variance and high inter-class variance, (c) 
multimodal distributions with low inter-class variance, (d) log likelihood ratio of multimodal 
distribution (c). 
 

 

4.2.4 Evaluating and Improving Online Tracking Performance  

In this work, the decision tree is built incrementally online in order to optimise 

performance and reduce build time. Learning the decision tree can be computationally 

intensive if compared to testing the classifier, which is relatively fast. In order to exploit 

the speed of testing, a small set of training data is initially generated, S , as described 

above. S  contains synthetic data and examples obtained online. It is also a subset of all 

the data available,
complete
S . 

complete
S is a set of patches from each point in each image and 

all possible synthetic image transformations. An initial decision tree is built with the 

                            (a)                                                                              (b) 
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small data-set S . This classifier is tested on the current image from the laparoscope. The 

classifier is likely to perform poorly on the data as it has been trained on a small subset. 

This can lead to a high number of false positives indicating that the classifier may be 

improved. Patches around the false positive points detected in the image are added to the 

set S  and the classifier is retrained. The entire tree does not require retraining; only the 

patches in the node 
j

N  are responsible for incorrect classification. 
j

N  will be retrained, 

based on the new distribution of the data, to obtain a more informative test. By retraining 

the tree, it is possible to over-fit the classifier. The metric indicating over-fitting is the 

number of false negatives. If false negatives are observed, the nodes of the tree are 

retrained. 

 

The final adaptive step in the update is the selection of the most discriminative colour 

space for tracking. This follows the criterion set out in [216] where forty-nine colour 

spaces are searched in order to identify the most discriminative. This is a linear 

combination of Red, Green and Blue (RGB) defined as  

 

1 1 2 3 *{ , , | [ 2, 1, 0,1,2]}F w R w G w B w= ∈ − −  (4.8) 

 
thus creating a set of colour spaces including RGB, intensity, approximate chrominance, 

and excess colour. The most discriminative colour space is identified using the variance 

ratio outlined in Equation (4.6).  

 

4.3 Modelling Tissue Motion 

The 3D position of the region is recovered by using stereo geometry. A region is 

detected in the left image while the epipolar line in the right image is searched in pursuit 

of a correspondence using the region tracking approach described above. The centre of 

the camera rig is the left camera and the origin of the world is taken as the centre of the 

camera rig on the first frame. This approach requires camera calibration, which is 

performed using a closed form solution [74] using the assumption of a pinhole camera 

model. The stereo laparoscope is calibrated before the procedure and remains unchanged. 

The baseline between cameras is approximately 5mm. 
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4.3.1 Extracting Intrinsic Global Tissue Motion 

Tissue motion can be a result of respiratory motion, cardiac motion, and tissue-tool 

interaction. Tissue-tool interaction is difficult to predict; however, respiratory and 

cardiac motion is generally periodic or quasi-periodic. This intrinsic periodic motion can 

be used to predict and track the tissue surface.  

  

The respiration cycle is a periodic 1D signal that causes a change in the 3D position of 

the tissue. It is the change in 3D position that is observed by tracking the tissue and 

subsequently, the 1D signal embedded in a 3D space. This signal can be extracted by 

transforming the data to a new coordinate system aligned to the largest variance in the 

data. This can be estimated using Principal Component Analysis (PCA), which provides 

an orthogonal linear transformation of data ( , , )Tm x y z=  to a new coordinate system 

TY such that the first coordinate holds the largest variance in the data, or the principal 

component of the data. This transformation is defined as T TY m W= . The principal axis 

of the motion of the liver is in the superior-inferior direction [132] and is described in the 

principal component, or the first coordinate of TY .  

  

Extracting tissue motion caused by both the cardiac and respiration cycles is more 

complex. It is proven in [89, 137] that the motion of the heart is a coupled result of 

cardiac and respiratory motions. Such tissue motions are extracted by performing 

Independent Component Analysis (ICA) - a statistical technique for separating signals 

into additive subcomponents while maximising mutual statistical independence. ICA can 

be formulated to consider the recovered 3D motion of the surface of the tissue to be the 

latent variables ( , , )m x y z=  and the components of intrinsic motion as ( , )s h r= . It 

attempts to find the transformation W  such that s Wm n= +  where n  is zero mean 

Gaussian noise. The components of m can be written as the weighted sum of the 

independent components, i.e., 
k k

m a s= ∑ , where 
k
a is a vector of mixing weights 

which make up the mixing matrix 
1

( )
n

A a a= … , where 1W A−= . The source s  and 

the mixing matrix A  are estimated adaptively with cost function T

k
s w m=  to maximise 

non-Gaussianality. 
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4.3.2 Tissue Motion Models 

Modelling the global motion of tissue resulting from respiration or the cardiac cycle can 

be used for motion prediction and compensation. For example, [129] identifies that 

motion of the liver is correlated to the periodic motion of the diaphragm. It should be 

noted here that there are two types of periodic respiration resulting from free breathing 

and assisted breathing, with the use of a ventilator. Assisted breathing is standard 

practice for MIS procedures and regulates the frequency of breathing cycles. Although 

the breathing cycle is periodic, it is asymmetric: more time is spent in the exhale 

position. Lujan proposes an asymmetric model in [132]  

 

2

0
( ) cos ( )n t
z t z b

π
φ

τ
= − −  (4.9) 

 
where 

0
z is the position of the liver at the exhale, b is the amplitude, τ  is the breathing 

cycle period, φ  is the phase and n describes the shape or gradient of the model.  

 

The motion of the heart can be described as quasi-periodic. In [217], the authors show 

that this quasi-periodic motion can be modelled using a Fourier series such that  

 

1

( ) sin( )
m

i i
i

y t c r iwt φ
=

= + +∑  (4.10) 

 
where w  is the cardiac period, φ  is the harmonic phase, 

i
r  is the harmonic amplitude 

and c  is the DC offset. The Levenberg-Marquardt (LM) algorithm is used to estimate the 

model parameters. The LM algorithm is a non-linear, least squares minimisation 

algorithm which interpolates between the Gauss-Newton algorithm and gradient descent 

to optimise a set of parameters: β  of the model ( , )
i

f x β  to minimise the square of the 

deviations such that  

 

 
The methods described above not only extract the temporal respiratory and cardiac 

cycles, but they also provide spatial information about the global position of tissue in the 

MIS environment at any point in the cycle.  

2

1

( ) [ ( , )]
m

i i
i

S y f xβ β
=

= −∑  (4.11) 
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4.4 Experiments and Results 

The performance of the proposed approach under scale change, orientation change, 

surgical smoke, occlusion, and deformation resulting from the respiratory and cardiac 

cycles has been evaluated. It is assessed on simulated and in vivo MIS data-sets of the 

liver, heart, and abdomen. The approach is compared to four conventional tracking 

techniques SIFT [124], LK [214] (with template update), and two mean-shift algorithms 

[216]. A brief description of these methods and their implementation is provided in the 

following section and more details are provided in Chapter 2. 

 

SIFT is a method for wide baseline feature matching. It can be used for tracking in a 

tracking-by-detection framework where features are redetected at each frame and no 

temporal information is used. SIFT detects scale invariant Different of Gaussian (DOG) 

regions and encodes greyscale patches around the region as a histogram of oriented 

gradients. It is a tracking-by-detection approach using a nearest neighbour ratio 

matching, 0.6, and no temporal information between frames. This makes it well-suited to 

dealing with occlusion, however, it requires the region to be detected in each frame and 

for said region to be globally unique in the image. In rigid scenes, matching can be 

improved by using global matching constraints such as Random Sampling Consensus 

(RANSAC), however, these techniques cannot be easily applied in unknown, non-rigid 

environments. 

 

LK is a pyramid optical flow method for region tracking. LK encodes greyscale spatial 

information in a template and iteratively attempts to minimise the difference between the 

template and the observed data. LK is based on three key assumptions [116]: 1) 

brightness constancy, 2) temporal persistence, or small, differential changes between 

frames, and 3) spatial coherence, or the assumption that pixels belong to the same surface 

and follow the same motion. LK tracking can suffer from the aperture problem and 

region drift due to template updating required for the temporal persistence criterion. 

 

Mean-shift is a non-parametric, statistically robust method for locating local maxima in a 

probability density distribution. In this application, a DOG region is detected in the first 

frame and mean-shift is used to track in subsequent frames. Mean-shift encodes the 

colour values of the pixels in the patch around the region as a histogram and makes no 

use of structural information, thus making it capable of tracking deformation. Mean-shift 
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is well-suited to large self-contained blobs and is less suited to lines or corner-like 

structures. Unlike SIFT, regions only have to be locally unique since temporal 

information is used in tracking. It is assumed that the displacement of a region is small, 

and a spatial overlap of the image patches exists between frames. As mean-shift relies 

only on colour and not structure, it is able to deal with partial occlusion of a region, 

however, the requirement for overlap means it is not able to deal with the recovery from 

full occlusion if the region moved during occlusion. This work uses two mean-shift 

approaches as outlined in [216]. These mean-shift trackers are more discriminative than 

the standard approach and attempt to find the optimal colour representation of the region. 

The first approach compares the pixels in the detected region to the pixels in the 

surrounding area and searches for the three most discriminate colour spaces. These 

colour spaces are subsequently used in the mean-shift tracker. The second approach 

incorporates an additional step to reduce the effect of distracters, or pixels, in the 

surrounding area, which may cause the mean-shift algorithm to converge on the wrong 

point. 

  

To evaluate the performance of the tracking methods the evaluation criteria outlined in 

[114] and [204] are used. Two performance metrics are computed. The sensitivity (also 

known as recall) is computed as 

 
#

#

correct matches
sensitivity

correspondences
=  (4.12) 

 
where correspondences is the number of trackable regions existing in the current image. 

A good region tracking method will have high sensitivity as this is a measure of the 

density of regions. The second performance metric is (1 − precision). This is a measure 

of the total number of incorrectly tracked regions with respect to the total number of 

tracked regions such that  

 
#

1
# #

incorrect matches
precision

correct matches incorrect matches
Λ = − =

+
 (4.13) 

 
A good region tracker will have a low Λ  value. These metrics are evaluated individually 

with respect to time. This provides an evaluation of the temporal persistency of the 

region trackers. 
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4.4.1 Simulated Experiments  

To quantitatively evaluate the performance of the proposed method with respect to 

deformation, a simulation was created to generate synthetic data. An image of the heart 

was textured onto a 3D surface, as shown in Figure 4.5 (a-d). The surface was 

periodically deformed with a mixture of Gaussians so as to simulate cardiac and 

respiratory tissue deformation as different frequencies. The mesh was deformed for 4000 

frames and generated the ground truth position of 100 regions for quantitative analysis. 

Cardiac, respiratory motion, and noise are simulated, but not specular reflection and 

changing light conditions as light-tissue interaction is non-trivial to model. 

   

In Figure 4.5 (e), the trackers are quantitatively evaluated with respect to sensitivity over 

time. It can clearly be seen that there is oscillation in the performance of all the trackers. 

This oscillation corresponds to the periodic nature of the applied deformation. The 

reduction in performance occurs at the extremes of deformation. At this point, the 

regions have changed shape, and localising the centre of the region accurately may fail 

given that the region tracking methods are drawn towards prominent information in the 

patch (such as edges or corners which may not be at the centre of the patch). 

 

This oscillation affect is particularly noticeable on SIFT. The change in shape of the 

region makes accurate repeatability of the DOG detector challenging and violates the 

geometric constraints imposed by the SIFT descriptor. As deformation of the surface 

increases, the number of regions, which may accurately be matched using a histogram of 

gradients, is reduced. This oscillation makes SIFT less attractive for continuous tracking 

in MIS confirming the results in Chapter 4. Figure 4.5 (f) shows SIFT has the lowest 

Λ . This is a result of the matching strategy. The nearest neighbour ratio test prevents a 

region from matching if it is visually similar to another detected region to prevent false 

matches. Tracking may be improved with more sophisticated matching incorporating 

temporal information or prior knowledge of the global scene structure. 

 

The LK tracker performs well at the beginning of the experiment with high sensitivity 

and low values of Λ . The temporal persistence and spatial coherence assumptions are 

held in the simulated data. The noise added to the system violates the brightness 

constancy assumption. Combined with non-linear deformation, the noise causes error 

propagation when the template is updated: the tracker’s performance degrades over time. 
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Figure 4.5 Quantitative tracking performance for simulated data with the five tracking algorithms 
considered. (a-d) The simulated data is created by warping an image taken from a MIS procedure 
with known ground truth deformation characteristics. (e) and (f) Quantitative performance 
evaluation for the five different tracking techniques compared; green – online learnt tracker, red – 
SIFT, dark blue – Lucas Kanade, black – mean-shift 1, and light blue – mean-shift 2. 

(a)                                                                       (b) 

(c)                                                                       (d) 

(e) 

(f) 
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The two mean-shift trackers perform similarly. The algorithms have low sensitivity and 

are only able to track a small number of regions accurately. This poor performance can 

be attributed to three factors: 1) for the majority of detected regions, colour information 

in MIS images is not sufficient to distinguish a region from its surroundings. This results 

in a high value of Λ  and a high number of wrongly matched regions; 2) DOG detects 

edges, corners and blobs in greyscale images, however, mean-shift works well with large 

self-contained regions of distinct colour. If the region is not self-contained, the mean-

shift will drift; and 3) mean-shift assumes a spatial overlap in a region’s location 

between frames. If the overlap is too small, or does not exist, the pixels will fall outside 

the basin of attraction and lead to tracking failure.  

 

The proposed tracker, with online learning, maintains a good performance in the 

presence of deformation with a derived sensitivity outperforming alternative approaches. 

The Λ  is low and only outperformed by SIFT. This proves the proposed approach is 

capable of learning unique qualities in a region and encodes that information enabling 

the region to be successfully tracked in the presence of visually similar regions. The 

robustness to synthetic deformation can be attributed to learning from example data. By 

learning from example data generated by the LK tracker, the classifier is built on real 

image transformations, which will be subsequently observed due to the periodic nature of 

the deformation. Although the online learnt tracker performs well, there remain points 

that cannot be tracked, and there is fluctuation in performance. This is attributable to 

noise in the image or poor initialisation from the LK tracking.  

 

4.4.2 In vivo Experiments 

The performance of the proposed technique was quantitatively evaluated on in vivo data. 

50 regions were detected in the first frame for each sequence. An expert user manually 

obtained ground truth data for each region in these sequences at 50 frame intervals.  

4.4.2.1 Tissue Deformation 

Figure 4.6 shows the three sequences used and the corresponding tracking results. Table 

4.1 provides additional results. Figure 4.6 (a-f) show sequences taken from two Totally 

Endoscopic Coronary Artery Bypass graft (TECAB) surgeries. Centred in the endoscopic 
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image is the epicardial surface deforming with cardiac and respiratory motion. Rapid 

tissue deformation and specular reflections make tracking challenging in these 

sequences. Figure 4.6 (g-i) show the sequence and tracking results for footage of the 

liver deforming due to respiratory motion. This sequence is challenging due to changes 

in illumination. The point light source causes large changes in illumination and alters the 

visual appearance of the tissue depending on the distance and orientation of the tissue to 

the light source. 

 

The relative performance of the trackers is similar to the synthetic data. In the TECAB 

sequences as shown in Figure 4.6 (a) and Figure 4.6 (d), the LK tracker performs well 

initially, however, as drift occurs, the performance degrades over time. Brightness 

constancy is violated here due to specular reflections and the change in visual appearance 

as a result of the point light source. The mean-shift tracker performance in the first 

sequence, shown in Figure 4.6 (a), was inferior to that shown in Figure 4.6 (d). This is 

due deformation, which is more pronounced in the first sequence leading to larger inter-

frame motions. SIFT performs poorly in this sequence because larger deformation leads 

to larger changes in visual appearance. The SIFT descriptor is affected by the specular 

highlights which cause sharp gradients. Region density and persistency are higher using 

the online learning method as shown in Figure 4.6 (b) and Figure 4.6 (e). The tracking 

deteriorates towards the end of the first sequence due to tissue-tool interaction. The 

robustness to drift of the online learnt tracking algorithm is compared to LK and 

illustrated in Figure 4.8 (a) as a 3D spatio-temporal plot.  

 

Table 4.1 In vivo data. Summary of the tracking performance of five algorithms with respect to 
tissue deformation.  

 LK MS1 MS2 SIFT Learning 

Sensitivity 0.333 0.245 0.241 0.287 0.752 

Λ  0.555 0.545 0.586 0.049 0.170 
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Figure 4.6 (g) shows footage of the liver deforming as a result of respiration. 

Deformation is less pronounced here than on the cardiac surface, however, illumination 

of the surface changes significantly as the organ moves toward, and away, from the 

laparoscope and light source. The LK tracker performs poorly in this footage. This is 

attributed to changes in scale and illumination, which violate the brightness constancy 

assumption. The cyclical performance of SIFT is seen again in this sequence. The DOG 

detector has relatively low repeatability on this sequence because the structures on the 

liver are small. These structures disappear when the Gaussian kernel is applied, thus 

reducing the number of detected regions. The mean-shift algorithms do not perform well 

due to the uniform colour distribution of the liver. The online learnt tracker performs 

well on this sequence not only because it is learning the most discriminative information 

but also because the encoding of the information is robust to changes in illumination. 

The encoded information is the relative value of pixels, which makes the learning 

method well-suited to handling changes in illumination because these relative values will 

remain consistent under linear changes in illumination.  

 

4.4.2.2 Occlusion 

The use of tools in surgery leads to occlusion of the operative field and full or partial 

occlusion of regions on the surface of tissue. Figure 4.7 (a,d,g) show deformation of the 

liver and abdomen wall resulting from respiration. The surgeon introduces tools in these 

sequences, which leads to occlusion of the surgical field-of-view. Quantitative analysis is 

provided in Figure 4.7 and Table 4.2. In Figure 4.7 (a), only a small number of regions 

are occluded starting at frame 200. At this point, the decreased performance of the LK 

and mean-shift trackers is clear. These trackers require temporal information and have no 

explicit mechanism for dealing with recovery from full occlusion. SIFT and the online 

learning tracker remains robust in the presence of occlusion. In Figure 4.7 (d), the 

number of occluded regions increases. The trackers’ performances are similar to that of 

the first sequence. The online learning tracker outperforms SIFT on these sequences, 

however, both have a low Λ  values, thus demonstrating the correct identification of 

occluded regions. 
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In the last sequence, Figure 4.7 (g), the surgeon uses an irrigation tool. This tool 

occludes the majority of the regions after 300 frames. At this point, there is a significant 

reduction in the performance of LK and mean-shift (almost zero sensitivity). At around 

frame 700, the suction tool interacts with tissue to remove blood from the surface. This 

leads to a reduction in sensitivity of the online learning tracker and causes an increase in 

the value of Λ . This is attributed to the change in visual appearance of the scene due to 

the removal of blood. This scene is different to the data used to train the classifier. It is 

proven that the proposed approach to tracking deals well with tracking failure recovery 

resulting from full regional occlusion. This capability is further illustrated in the 3D 

spatio-temporal plot, Figure 4.8 (b), where the online tracker, shown in green, is capable 

of recovering from occlusion and continuous tracking, unlike SIFT, which is not 

continuous. 

 

 

Table 4.2 In vivo data. Summary of the tracking performance of five algorithms with respect to 
occlusion. 

 LK MS1 MS2 SIFT Learning 

Sensitivity 0.557 0.307 0.322 0.458 0.728 

Λ  0.356 0.500 0.494 0.017 0.144 
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Figure 4.8 (a) A single region tracked over time showing drift with LK tracking in blue and the 
robustness of proposed approach in green. (b) Illustrates the problem of occlusion by a tool. 
Green – the proposed online learnt tracker, red – SIFT. SIFT tracking is not continuous. 

(a) 

(b) 

Time 

Time 
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4.4.2.3 Scale and Rotation 

During MIS, the surgeon frequently manipulates the laparoscope for the purpose of 

navigation. This tendency leads to changes in scale and orientation of the images. The 

rotation of a laparoscope is limited by the fulcrum effect [218] and, consequently, 

rotation is usually observed around the optical axis, Figure 4.9 (a). In Figure 4.9 (b-c), 

the effect of rotation is quantitatively evaluated. First, the laparoscope is rotated 

approximately 50° anticlockwise. It is then returned to its original position and rotated 

120° clockwise. The LK tracker and mean-shift trackers do not explicitly encode 

information about rotation, however, the LK track is able to perform well in this rotating 

sequence due to the template update. The inter-frame motion of the camera is small, 

which means the temporal persistence assumption is maintained. The mean-shift trackers 

do not encode spatial information but they are theoretically invariant to rotation: the poor 

performance here is attributable to the lack of distinct colour variation and poorly 

defined regions. SIFT, which models orientation, is shown to be robust to rotation, and 

density is higher with the online learnt tracker.  

 

In Figure 4.9 (g), the laparoscope is moved along the optical axis. This causes a scale 

change of approximately 2.8. The laparoscope is moved away from the wall, back to its 

original starting position, and then further away. This causes a scale change of 

approximately 0.66. As a result of this significant scale change, only 18 regions detected 

in the first frame are visible throughout the entire sequence. These regions are used to 

evaluate overall  performance.  Quantitative  results  are  shown  in  Figure 4.9 (h-i)  and 

Table 4.3. The LK tracker does not explicitly incorporate scale information, but it is able 

to track the regions due to the template update and temporal persistence assumption. The 

sensitivity reduces towards the end of the sequence due to error propagation and drift. 

The mean-shift trackers are generally not invariant to scale changes, although the 

approach has been extended in [121] for scale. The high value of Λ  demonstrates, once 

again, how colour alone is insufficient for dense region tracking. In the SIFT detection 

phase, multi-scale DOG regions are extracted, which makes it theoretically robust to 

scale changes. The sensitivity of SIFT decreases as scale changes, and the number of 

incorrectly matched regions increases significantly when the scale is reduced to 0.66. 

The proposed online learning algorithm explicitly incorporates scale into the learning 

process, thus enabling it to remain robust to changes in scale and to out-perform 

conventional trackers. 
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4.4.2.4 Surgical Smoke 

Figure 4.9 (d-f) and Table 4.3 document investigations into the effect of smoke 

resulting from diathermy. In this sequence, the diathermy is activated twice resulting in 

the smoke shown in Figure 4.9 (d). The build up of smoke takes place gradually, over a 

number of frames, and remains visible for a short period before a suction device is used 

to remove it. Translucent smoke has the effect of greying the pixels, reducing colour 

distribution, flattening gradients, and making the image appear increasingly 

homogenous.  

  

The presence of smoke affects the SIFT tracker as the histogram of gradients will be 

changed, thus complicating the matching process. As demonstrated in Figure 4.9 (e), 

when the diathermy is activated, causing smoke, the sensitivity for SIFT drops to zero. 

The gradual flattening of gradients during the appearance of smoke means the LK tracker 

has less structure on which to converge. This results in template drift because the smoke 

is incorporated into the template. In this sequence, the mean-shift tracker initially 

performs well and with high sensitivity. This is attributed to a number of self-contained 

blobs of distinctive colour on the surface of the tissue; however, greying of the pixels 

caused by surgical smoke, changes the colour distribution of the region patches. The 

model of colour distribution for the mean-shift trackers is no longer valid as a result. 

This issue could be resolved by incorporating a smoke model into the mean-shift 

algorithm where the colour distribution model is learnt. The online learnt tracker 

performs well because the greying of the pixels and flattening of gradients has been 

simulated and incorporated into the training data. The proposed approach has, therefore, 

learnt what structures in the scene remain prominent whilst obscured by smoke. The 

online learnt tracker remains robust to smoke, however, there is a slight drop in 

performance, which is attributed to the smoke modelling that cannot capture the non-

uniform, spatial distribution of smoke. It should be noted that the performance of the 

online learnt tracking is dependent on the quality of smoke appearance modelling.  

 

Table 4.3 In vivo data. Summary of the tracking performance of five algorithms with respect to 
scale, rotation and surgical smoke.  

 LK MS1 MS2 SIFT Learning 

Sensitivity 0.665 0.263 0.332 0.453 0.892 

Λ  0.278 0.606 0.571 0.032 0.076 
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4.4.3 In Vivo Tissue Motion Modelling 

To demonstrate the potential clinical application of the online learning approach for 

deformation tracking, the intrinsic global motion of the tissue is extracted from two in 

vivo sequences. The first sequence, shown in Figure 4.6 (d), contains motion resulting 

from cardiac and respiratory cycles. The recovered 3D motion is decomposed into its 

independent components of cardiac and respiratory motion using ICA. The results are 

shown in Figure 4.10 (a-b). The first and second components have two, distinct 

frequencies. The extracted components contain noise, which is a combination of small 

tracking inaccuracies, and the small baseline of the stereo camera (5 mm), which causes 

errors in 3D depth recovery. As a result, the cardiac and respiratory motions are not 

flawlessly isolated, however, models can be fitted to the separated, noisy signals using 

the LM algorithm, as shown in Figure 4.10 (a-b), and the residual error, shown in 

Figure 4.10 (d-e).  

  

Example frames taken from the second sequence are shown in Figure 4.6 (g). The 

sequence shows liver motion resulting from respiration. PCA is used to identify the 

principal axis of motion along which the region on the surface of the liver moves. It is 

along this axis, or principal component, that Equation (4.9) is used to fit the respiration 

model. The results are shown in Figure 4.10 (c) and Figure 4.10 (f). It is evident that the 

model is well-fitted to the data. The extracted global motion of the tissue, along with the 

ICA mixing matrix and PCA transformation matrix, can be used to model the motion of 

the surface of the tissue. These motion models can be used to predict the future position 

of the regions in 3D.  
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Figure 4.10 Modelling tissue deformation. (a-c) The extracted components from global motion 
(green) and models (red) and (d-f) corresponding error plots (blue). (a) The first ICA component 
extracted from footage of the heart representing the cardiac motion. (b) The second ICA 
component extracted from footage of the heart representing the respiratory motion. (c) The first 
PCA component extracted from footage of the liver representing the respiratory motion. 

(a)                                                                             (d)    

(b)                                                                            (e)    

(c)                                                                            (f)    
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4.5 Computational Performance Analysis 

The proposed framework was implemented on a desktop PC with an Intel Pentium 3 

GHz processor and 2GB of RAM. The software was written in C++ on a Microsoft 

Windows environment.  The most computationally demanding component of the 

framework is learning the feature representation. In Figure 11, the average 

computational requirements for learning a single feature is shown. The figure compares 

computation timings for exhaustive search and the optimised search in Figure 4.11 (a) 

and Figure 4.11 (b) respectively. The optimised search is approximately 10 times faster.  

 

The graphs in Figure 4.11 share a similar profile. The computation is initially high; this 

corresponds to building the initial classifier. Subsequent peaks in the graph are the result 

of retraining the classifier and adaptively updating it. After 20 frames the requirement to 

retrain the classifier is reduced. This implies that a context specific descriptor has been 

learnt and it is well-suited to the current endoscopic images. If the images significantly 

change or a new object is introduced into the scene, the classifier may retrained to take 

this into account. Tracking the feature with the context specific descriptor is 

computationally efficient. The average time required to track a feature is 1.9ms with a 

standard deviation of 0.62ms. As discussed earlier, feature tracking and learning for the 

online tracker are independent processes which can be performed in parallel to avoid 

computational bottlenecks. 

 
                                       (a)                                                                            (b) 

Figure 4.11 The computational requirements of the learning phase of the system shown for (a) 

exhaustive search and (b) optimised search.   
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4.6 Discussions and Conclusions 

This chapter provided a detailed explanation of a region tracking approach using online 

learning of local deformation. The approach is capable of dealing with changes in scale 

and orientation and proposed the use of synthetic smoke simulation to enable robust 

region tracking in the presence of smoke resulting from the use of diathermy. The 

approach has been validated on simulated and in vivo data and compared to four 

conventional tracking techniques. Robustness to drift, the presence of smoke, and 

changes in scale and orientation has been demonstrated and the capability to recover 

from occlusion. The potential clinical applications of the proposed technique have been 

highlighted by learning the global intrinsic motion of tissues and modelling it for 

applications in motion compensation and active constraints. 

  

It is proven that the LK tracker had high region-density and persistency in the presence 

of deformation, scale change, and rotation where the algorithm’s assumptions are held. 

However, by performing template update, the approach eventually succumbs to error 

propagation and drift. The regions often drifted only a short distance to nearby parts in 

the image. This suggests that these image parts are naturally more robust to deformation 

and are more suitable to tracking. This implies that tracking could be improved with the 

development of a deformation invariant region detector. The LK approach lacks an 

explicit mechanism for dealing with occlusions, and it was found to be sensitive to 

illumination changes. The window size was set constant for all video sequences and 

performance could be improved by optimising the window size for individual sequences, 

as shown in [219]. This would require manual parameterisation.  

  

The results demonstrate that the mean-shift trackers are not-well suited to tracking the 

majority of regions detected on the surface of tissue leading to low region density. In 

these video sequences, colour alone is not a substantially unique characteristic for 

tracking regions. Region tracking may also fail under rapid motion where the region falls 

outside the basin of attraction. It should be noted; however, that when mean-shift can 

track a region, it is robust to image transformations including deformation, rotation, and 

partial occlusion. Both algorithms performed at a similar level - with the second 

approach performing slightly better. DOG regions are not ideally suited for these 

methods and better results are achieved with a colour region detector, such as maximally 

stable colour regions [220]. 
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SIFT is not designed for use as a tracker but rather for wide baseline matching. This 

tracking-by-detection approach means it recovers well from occlusion and tracking 

failure, however, the histogram of gradients used to represent the regions does not deal 

well with tissue deformation or specular highlights. The approach can fail if the 

repeatability of the detector is low. There is a compromise between detecting too many 

and too few points using tracking-by-detection strategies,: matching too many points is 

computationally expensive and exacerbates the matching problem, while not detecting 

enough points leads to low repeatability and tracking failure. This is a compromise 

between region density and matching persistency. The DOG detector is not invariant to 

deformation and may not accurately, or consistently, localise the centre of detected 

points under observed deformation. This is due to the DOG identifying what structural 

information is important and using this to guide the localisation. Matching results may be 

improved with a more sophisticated matching strategy, thus incorporating temporal 

information, prior knowledge, or global outlier removal. If the histogram of gradients is 

not invariant to the types of deformation and image transformations observed in MIS, the 

improved matching strategy will have limited effect.  

  

The results presented in this chapter show the online learning tracker performs 

consistently well under all image transformations with good region density and 

persistency. Higher density and persistency can both be attributed to the learning 

approach. Region density is high because the approach learns what is unique about a 

region relative to its surrounding, encodes this information, and uses said data to 

distinguish it from other regions. Region persistency is high as learning is performed 

directly from the observed data. This enable the approach to learn what information is 

robust to the observed image transformation. This approach is particularly well-suited to 

tracking periodically deforming tissue, however, its robustness is limited by the set of 

training data used to build the classifier. 
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Chapter 5  
 

 

 

Simultaneous Localisation And 

Mapping (SLAM) For the 

Minimally Invasive Environment 
 

 

 

 

 

 

 

 

5.1 Simultaneous Localisation And Mapping (SLAM) 

 

Simultaneous Localisation and Mapping (SLAM) is a technique developed by the 

robotics community to build a map of an unknown environment while simultaneously 

estimating the position of the robot. It has received significant attention since the late 

1980s due, in part, to the increase in computing processor power. Much of the early work 

was done with lasers and sonar range finders, however, there is a new body of research 

emerging involving cameras. This is motivated by the cameras capacity to offer a rich 

source of information in a compact device at a lower cost than lasers or sonar.  

 

The SLAM problem has been solved, thus far, using a number of theoretical 

formulations. The seminal paper by Smith, et al., [172] is widely credited for developing 

the basic framework required to simultaneously solve the localisation and mapping 
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problem. Theoretically, SLAM is considered to be a well-defined problem, and the 

majority of current research is focused on problems associated with the practical 

application of SLAM to the real-world. The following section describes some of the 

significant and recent contributions to the literature and discuss design choices in 

developing a SLAM system. 

 

The main disadvantage of using a camera as a sensor is its inability to capture depth 

information because it is a 2D, passive sensor. A stereo system can be employed to 

address this issue. This was used in one of the earliest vision SLAM papers [221], and 

the idea was extended to multiple camera configurations [176, 222, 223]. In [178], 

Davison, et. al., presented the MonoSLAM framework. The system demonstrates that, 

with a partial feature initialisation strategy, the SLAM problem can be formulated using 

a single, moving camera. This work has inspired significant research into monocular 

SLAM [224-227] including the use of a single, Omni directional camera [228].  

  

Probabilistic methods are crucial to the success of SLAM. A probabilistic method 

enables the system to model noise in sensor measurement, model the correlation between 

features in the environment, and predict and estimate the sensor position and map with 

associated uncertainty. The most common probabilistic frameworks for solving SLAM 

are the Extended Kalman Filter (EKF) and Particle Filter. The EKF has been extensively 

used in SLAM [178], despite errors that can be introduced into the system through linear 

approximation. The basic EKF, with single state vector and full covariance matrix, has a 

computational complexity of 2( )O N , where N is the number of features in the map. 

This limits the size of map that can be built and updated in real-time. In addition, the a 

posteriori distributions are represented as uni-modal Gaussians allowing only one 

hypothesis about the state of the system or the position of the sensor and map. This can 

lead to system failure in the presence of ambiguous sensor readings. 

  

Particle filters are based on Monte Carlo sampling of particle distributions. This enables 

the process model to be non-linear and the pose distribution of the sensor to be non-

Gaussian and multi-modal. In [229], a FastSLAM algorithm is presented, which, by 

using the Rao-Blackwellised particle filter, addresses the issue of the high-dimensional 

state space of particle filters. Through marginalisation, the map is represented as 

independent Gaussians that enable real-time performance. The capabilities of FastSLAM 
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have been demonstrated in [229, 230]. This approach can suffer statistically from 

degeneration and the marginalisation of the map creates dependency of measurement and 

pose history. Particle filters have been applied to vision-based SLAM for re-localisation 

and to improve robustness of rapid camera motion [224, 225]. In [226], FastSLAM is 

used to increase the number of features that can be mapped in real-time. 

  

The map can be represented as an occupancy grid [231, 232] or feature map. Occupancy 

grids are generally used with range finders and represent the environment by dividing it 

into a cell-grid. Feature maps are the standard representation in vision approaches and 

consist of a number of 3D positions in the environment. Each position represents a 

significant part of the environment or landmark. These maps are generally sparse, and 

each feature is associated with a spatial uncertainty and usually some image information 

to enable the performance of data association. In early studies, monoSLAM carefully 

manages the number of features (around 100) to ensure real-time performance. The 

desire for larger maps has led to topological and sub-mapping [233] algorithms. The 

work of Klein [227] uses key frames to increase the number of features that are mapped. 

This approach uses SLAM and Structure-From-Motion, in parallel, to enable sequential 

mapping and small batch process, thus reducing the map’s uncertainty. 

  

Data association is an essential part of the SLAM framework. In vision SLAM there are 

two approaches to data association; 1) create a dense 3D reconstruction using stereo 

cameras [176, 222, 234, 235]; and 2) match regions of interest in the image plane [176, 

224-226, 236-241]. The former approach aligns the measured map with the existing map 

using various techniques to minimise entropy or Iterative Closest Point (ICP). These 

methods can be computationally expensive. The latter is far more common and matches, 

or tracks, regions of interest. This is discussed, in detail, in Chapter 2. A number of 

SLAM systems [176, 236-238] have employed Scale Invariant Feature Transform (SIFT) 

[124] to exploit invariance to scale and rotation. Other systems opt for computationally 

faster techniques for extraction and matching such as Harris corners [240] and Shi and 

Tomasi [239] with cross-correspondence and sum of squared difference. In [241], 

randomised lists are used to increase matching speed and recovery from failure.  

 

Data association can be improved, both in performance and in computational speed, by 

using a matching strategy. The matching strategy defines how the system will search for 

the corresponding regions and remove outliers. In [239], the features are projected onto 
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the image plane along with the uncertainty in the feature location. This is known as 

active search. Active search reduces the search area, thus increasing computational speed 

and reducing the likelihood of mismatching data. If data falls outside the search window, 

however, the data association will fail. Alternative approaches, such as [242] and [241], 

can be used to search for correspondences with all features in the map. This requires 

robust region matching and outlier removal but provides recovery from failure.  

 

A variety of methods can be used for camera motion prediction. The more efficient 

approach is to use the recent history of the camera’s movement and assume that the 

device will follow a similar path. This is known as a constant velocity motion model 

[239]. If the camera is attached to a robot, odometry [237, 243] may be used. 

Alternatively, if the system is used outdoors, Global Positioning System (GPS) can 

determine longitude, latitude, and altitude data. An Inertia Measurement Unit (IMU) 

[244, 245] can provide information about position by measuring the accelerations and 

rotations applied to the unit using accelerometers and gyros. Reliable and accurate 

IMU’s can be large and expensive. The motion of a camera can be estimated from frame 

to frame using Visual Odometry [236] or Structure-From-Motion. This approach is 

complementary to visual SLAM, however, it shares the same risks of failure, including 

image blur. Regardless of the method employed, the new position cannot be known with 

100% accuracy because the sensor estimates contain errors. The probabilistic model 

provides a way of dealing with discrepancies between the motion estimate and the actual 

motion by modelling uncertainty or an unknown element in the system. This uncertainty 

or unknown element may take the form of calibration error and wheel slippage for 

odometry, or unknown acceleration for the constant velocity model.  

 

The success of SLAM has led to a variety of applications in situations dangerous to 

humans [246], service robots [247], planetary exploration [236], entertainment or toy 

robots, and underwater exploration [244]. This does not mean SLAM is limited to robot 

navigation applications. It is also applicable to wearable computing [248], augmented 

reality [178], and the generation of photo-realistic models [176]. Each of these 

applications has its own set of specific research challenges. This chapter will investigate 

the use of SLAM in MIS to identify new areas of research. During MIS, the surgeon, or 

first assistant, navigates the laparoscopic camera through a cavity inside the patient to see 

the organs, as shown in Figure 5.1. SLAM in MIS is used to localise the laparoscope and 

build a map of the tissue and organs. 
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Figure 5.1 An illustration of laparoscopic movement during MIS. The laparoscope is inserted 
through an incision in the abdomen wall to visualise the internal organs. The surgeon controls the 
laparoscope and images are displayed on the monitor. The incision-point in the abdomen wall 
creates a pivot point and the fulcrum effect. 
 

5.2 SLAM for MIS 

The main considerations when using SLAM for MIS will be discussed in the following 

sections. The system employed is based on the MonoSLAM [178] system which is 

publically available [249]. The system has been extended to function with a stereo 

system and the region tracking algorithm outlined in Chapter 4. In addition, image pre-

processing is used to enable tracking with low-quality fibre optic images. The SLAM 

framework is based on the EKF, and the fundamental steps of SLAM are illustrated in 

Figure 5.2. First a description of the EKF framework and how this is formulated to 

predict camera motion, measure the state, and to update the state estimation is provided. 

This is followed by an explanation of feature initialisation and map measurement. 

 

 

Figure 5.2 A schematic of the SLAM framework including feature initialisation, camera 
prediction, measurement model, and state (camera and map) update. 
 

Laparoscope 

Monitor 

Abdomen 
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5.2.1 Extended Kalman Filter (EKF) 

The SLAM system is based on the Extended Kalman Filter (EKF). A Kalman Filter 

[250] is a recursive Bayesian Filter which estimates the state of a system in the presence 

of noisy measurements. The filter assumes the system (prediction and measurement 

models) is linear and that the noise in the system can be modelled as Gaussian. A 

Gaussian distribution can be fully represented in closed form, by its mean and covariance 

matrix. The current state can be stored as a multidimensional vector x̂  and covariance 

matrix P  (size of the state vector squared). The Bayesian framework is used to update 

the mean and covariance matrix. The computational cost of the update is that of a matrix 

multiplication 2( )O N where N  is the dimension of the state vector. If the assumption is 

that the system is linear, and the distribution of noise is Gaussian, then the solution is 

optimal in a least squared sense. Unfortunately, most real-world systems do not hold true 

to these assumptions and mechanisms are required to cope with non-linearity and non-

Gaussian noise. 

 

The EKF [251] is a popular and simple extension of the Kalman Filter when dealing with 

non-linearity. In the EKF, the prediction and measurement models are differentiable, 

non-linear functions. The estimated state is linearised around the current state by 

computing a matrix of partial derivatives, known as the Jacobian. 

 

5.2.1.1 EKF State Prediction  

A new state of the system is blindly predicted during the prediction step using the 

prediction or state transition model. The prediction model f  is comprised of two 

elements; deterministic and stochastic. The deterministic part predicts the new state of 

the system at time t using the previous state 
1

ˆ
t−
x , the prediction model parameterises to 

define how the state is expected to evolve over time and, when available, a control input 

u . The stochastic part of the system models the uncertainty in the prediction and 

accounts for components in the real world which are hard to model. This is known as the 

process noise Q  and is used to increase the uncertainty in the covariance matrix P . The 

predicted state is known as the a priori state and does not use any measurement 

information. The prediction equations are defined as  

 

| 1 1
ˆ ˆ( , )
t t t t− −=x f x u  (5.1) 
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5.2.1.2 EKF State Update 

In the update step, the measurement of the state 
t
z  is compared to the predicted state 

| 1
ˆ( )
t t−h x , where the measurement model h  maps the state prediction | 1ˆ

t t−x  into the 

measurement space. The incorporation of measurement information into the state 

estimate reduces the uncertainty P  in the system. The new, improved state estimate is 

known as the a posteriori state, and the update equations are defined as 

 

| | 1
ˆ ˆ
t t t t t t

ν−= +x x W  (5.3) 
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T
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where v  is the innovation that represents the difference between the actual measurement 

and the predicted measurement calculated from the current state.  
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W  represents the Kalman gain 

1

| 1

1| 1

T

t t t t

t t

S−
−

− −

∂
=

∂
h

W P
x

 (5.6) 

 
and S  is the innovation covariance 

 

| 1 1| 1

1| 1

ˆ( )

T

t t t t t t

t t

x
− − −

− −

∂ ∂
= +

∂ ∂
h h

S P R
x x

 (5.7) 

 
where R  is the measurement noise.  

 

The EKF has implementation disadvantages because it is computationally more complex 

than the Kalman Filter. Furthermore, implementing Jacobian calculations can be non-

trivial, and it is sensitive to inaccuracies in initialisation. Theoretically, EKF only offers 
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approximations for non-linear systems. The approximation of a non-linear system can 

lead to errors in estimations for highly non-linear functions as higher order terms are 

neglected. This can result in sub-optimal performance or even divergence of the filter.  

  

5.2.2 Extended Kalman Filter for SLAM 

 

5.2.2.1 System initialisation  

The goal of laparoscope localisation and soft-tissue mapping in MIS is the recovery of 

the laparoscopic trajectory and to sequentially build a 3D map of the tissue. With the use 

of the EKF framework, a vector is used to represent the over-all state of the system x̂ . 

The vector is partitioned into two parts; the camera state ˆvx  and the map state ˆiy , where 

the map consists of multiple 3D features: 
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Z

    =      

y  (5.9) 

 
where the camera state is represented by the 3D position of the camera in the world 

coordinate system Wr  , the rotation (quaternion) of the camera (pose) in the world 

coordinate system WR
q , the velocity Wv and angular velocity Rw . The thi feature in the 

map ˆ
i
y  is represented by its 3D position.  

 

Crucially, a single covariance matrix P accompanies the state vector. This symmetric 

matrix represents the uncertainty to first order in all quantities of the state vector and is 

partitioned such that 
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x  and P  are able to grow, or shrink, dynamically as feature estimates ˆ

i
y  can be freely 

added to, or deleted, from the map as required. A full feature covariance matrixP  is 

maintained. This enables the camera to re-visit and recognise previously visited areas. 

The filter is initialised with: 
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 =  
 
 
  

P  (5.11) 

 
such that the origin of the coordinate system is the camera centre on the first frame.  

 

5.2.2.2 SLAM State Prediction 

In the context of SLAM, the EKF prediction step estimates the motion of the camera and 

its new location. The laparoscope is considered to be under human control, therefore, the 

prediction model must account for the unknown intentions of the operator. As described 

above, a two-part prediction model is used to statistically model this unknown entity. 

The first part is a deterministic element f , which estimates the camera’s motion based on 

an assumption or input. In this work, a constant-velocity, constant-angular-velocity 

motion model is employed. This does not assume that the camera moves at a constant 

velocity and constant angular velocity. Rather, it assumes that the expected velocity and 

angular velocity remain constant between frames. The most recent measured camera 

motion can be used to predict the next camera motion. The second part of the prediction 

model is stochastic. This stochastic element Q  models the uncertainty in the surgeon's 

movement of the laparoscope. The uncertainty in this system is the unknown acceleration 

value. This is modelled with a Gaussian profile. The prediction model assumes that the 

laparoscope moves smoothly and large accelerations are unlikely.  
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The prediction model of the state is therefore: 
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where  
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The velocity and acceleration in the system are modelled such that: 

 
W W
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tα

   ∆    = =    Ω ∆     

V
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Where Wa is the unknown acceleration and rα is the unknown angular acceleration with 

the process noise covariance for the camera motion 
v
Q  computed using the Jacobian 

calculation : 

T

v v

v n

∂ ∂
=

∂ ∂

f f
Q P

n n
 (5.15) 

 
where 

n
P  is the covariance of noise vector n . 

 

The size of parameter 
n
P  determines the growth rate of uncertainty in this motion model, 

and the smoothness of the expected motion is defined by setting this parameter as small 

or large. A motion model for very smooth motion with small accelerations is created by 

setting 
n
P  to be small. This system would be unable to cope with sudden rapid motion or 

directional change. To cater to rapid accelerations 
n
P  can be set to a high value. This 

means the uncertainty in the system increases significantly with each time step. In order 
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to maintain accurate state estimates with high 
n
P , each step requires accurate 

measurements of the features in the map.  

 

The uncertainty in the covariance matrix P  is updated to reflect the increase in 

uncertainty in the predicted state such that 
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Where 
∂
∂
f

x
is the full state transition Jacobians 
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5.2.2.3 SLAM State Update 

The measurement z  is compared to the predicted 
| 1

ˆ( )
t t−h x  in the update step. In SLAM, 

measurement z is the position of features in 3D relative to the camera. The measurement 

model h  maps the current state into the space where the measurements are taken and 

equates to translating the map features W

i
y  from their 3D position in the world 

coordinate system to the camera coordinate system. This is calculated by using the 

predicted position of the camera and W

i
y  

 
( )R W W W

i i L= −h R y r  (5.18) 
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where WR  is the rotation matrix and W

L
r  is the position vector of the left camera centre. 

R  is the camera coordinate system and W  is the world coordinate system. This enables 

the calculation of ν , which represents the difference between the actual measurement 

and the predicted, calculated measurement from the current state using Equation (5.5).  

The Kalman W gain in the system is estimated by 
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and S  is the innovation covariance 
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such that 

xx
P , 

i
xy
P  and 

i i
y y
P  are the sub-matrix blocks from the covariance matrix P .  

 

5.2.3 Feature Measurement 

The state update and measurement models require a measurement of the 3D features 

relative to the predicted camera position. This work uses stereo cameras to estimate the 

3D position of features by matching 2D image regions in the left and right images and 

performing triangulation, as described in Chapter 2. Prior to determining the 3D 

position a feature, the corresponding region must be identified using the image data.. 

 

Although the feature is represented as a point in 3D, an image descriptor or template is 

associated with it when initialised. This information enables the feature to be matched in 

future images. In principle, any region tracking method outlined in Chapter 2 can be 

used to solve data association. The online learning method described in Chapter 4 is 

used. In MIS, identifying corresponding regions is difficult and, to further constrain the 
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problem, an active search method [239] must be used to reduce the probability of 

mismatches and increase computational efficiency. 

 

Active search, as proposed in [239], uses the spatial and uncertainty information in the 

map to constrain the area in which a correspondence will be sought. The spatial 

information in the map is used to predict the location of the thi  feature 
i
y  in the image 

plane. The position is predicted using the intrinsic parameters and the predicted position 

of the camera. First, the location of each feature in the map W

i
y  is computed relative to 

the camera using Equation (5.18) and giving R

i
h .  

 

The point R

i
h  is projected into the image plane using a standard pinhole projection model  
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where 

u
fk and 

v
fk  represent the camera’s focal length and 

0
u and 

0
v  are the principal 

points and radial warp is considered by using [252]. 

 

The area to be searched is derived from the uncertainty of the feature’s predicted 

position. This is a 2D Gaussian p.d.f. over the image coordinates in image space. The 

size of the search area is defined by gating three standard deviations. This creates an 

elliptic search window centred on the feature’s predicted position in the left image space. 

A similar approach is used to identify the position of the feature in the right image, with 

the additional constraint of the epipolar line defined by the position of the matched 

feature in the left image. The left and right feature positions are triangulated to estimate 

the 3D position of the feature relative to the camera.  

 

5.2.4 Feature Initialisation 

New features are initialised and added to the map if the total number of visible features 

falls below a pre-determined threshold. MIS is a challenging environment for region 

tracking, and it was found, by tracking 20 features, an adequate trade-off between 
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computational performance and robust tracking was established. A feature is initialised 

by detecting a salient region in the image. Difference of Gaussian (DOG) [124] and Shi 

and Tomasi [105] features detectors were used. Theoretically, the benefits of DOG 

features are not fully-realised because the active search approach uses temporal 

information to constrain the matching problem. Consequently, the computationally less 

expensive Shi and Tomasi algorithm is favoured where specular highlights are identified 

in the image using a manually defined threshold in the saturation channel. Features 

detected close to highlights are discarded.  

 

A region detected in the left stereo image is matched in the right stereo image by 

searching the epipolar line. To ensure the feature is a good representation of the tissue 

structure, outliers were removed using RANSAC. The detected points in the left and 

right images are triangulated to estimate the feature’s 3D position relative to the camera 

R

i
y . This position is re-projected onto the image plane, and features with a large re-

projection error are discarded. The feature position in the world coordinate system W

i
y  is 

computed using the current a posterior estimate of the camera position.  

 

The new feature 
i
y is inserted into the state vector and covariance matrix such that 
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5.2.5 Honeycomb Artefact Removal 

Flexible endoscopes are commonly used in gastrointestinal surgery to safely visualise 

anatomy that cannot be accessed with a rigid laparoscope. These instruments have been 

used more recently in Natural Orifice Transluminal Endoscopic Surgery (NOTES), to 

access the abdominal cavity via natural orifices. The requirement for flexible instruments 

constrains the optical set-up. The optical configuration for endoscopes commonly 

consists of an objective lens that focuses light onto a coherent optical fibre bundle.  

 

The optical fibre bundle is flexible and acts as a light guide, transmitting light from the 

distal tip to the proximal end of the endoscope. The proximal end of the fibre is aligned 

with a Charge-Coupled Device (CCD) camera, which digitally images the transmitted 

light. To reduce cross-talk interference between adjacent fibres in the bundle, each 

individual fibre is manufactured with a non-transparent coating. This coating is visible in 

the image captured by the CCD camera and creates a honeycomb effect wherein the light 

from each individual fibre is surrounded by negative space, see Figure 5.3 (a) and 

Figure 5.3 (f). This can have an adverse effect on SLAM.  

 

The noise introduced into the image by the fibre coatings, or honeycomb effect, can 

make the region detection and tracking challenging. The noise causes sharp gradients in 

the image, which can lead to the erroneous detection of regions of interest in 

homogenous areas. In region tracking and matching without image pre-processing, the 

noise is incorporated into the representation of the regions. This creates an inaccurate 

representation of the region and can lead to mismatches and localisation inaccuracies. 

This problem is further complicated by sub-millimetre movements of the optics relative 

to the CCD. This can lead to changes in the image and movement of the honeycomb 

structure on the CCD chip. It is not possible to assume that the structure of the noise is 

constant. 

 

Several techniques have been proposed for removal of the honeycomb effect. For 

practical surgical use, it is possible to defocus the proximal imaging optics. This removes 

the honeycomb structure but can cause blurring and the subsequent loss of information. 

The optical fibre bundle used in this experiment, and described later, was relatively low 

resolution (10,000 fibres) and it was not desirable to use this approach. In [253], a band 

pass Fourier transform is employed to remove the noise. Following this work, in [254], 
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the authors use the Bayer CCD pattern of the camera and shaped Fourier filters designed 

to estimate the structure of the noise. It was experimentally observed that sub-millimetre 

movements of the optics relative to the CCD could result in changes in the image. As 

such, it can not be assumed the honeycomb structure is static in the image, and a robust 

approach, that did not require re-calibration after each use, is required. 

 

A band pass filter in the Fourier frequency space is used to remove the honeycomb 

effect. This demonstrated adequate, quality image restoration and enabled region 

tracking. The alignment of the fibres creates a regular spatial structure in the image, as 

shown in Figure 5.3 (f). In the Fourier spectrum, this regular pattern is distinct from 

underlying image data. The pattern is represented by high frequencies caused by edges in 

the honeycomb structure, Figure 5.3 (d). Suppressing frequencies associated with noise 

in the Fourier domain will remove the pattern when the Fourier image is converted back 

to image space using the inverse Fourier transform. To suppress these frequencies, a 

circular band pass filter is used, Figure 5.3 (e). The parameters of the filter were 

empirically defined. The parameters of the filter remain constant once estimated. A 

processed image is shown in Figure 5.3 (f) and Figure 5.3 (b). In the SLAM framework, 

the images are pre-processed with the band pass filter and smoothed with a Gaussian 

filter prior to tracking.  

5.3 Experimental Results 

5.3.1 In Vivo Experiments 

In order to evaluate the practical value of the SLAM framework, an in vivo porcine 

experiment was performed. The experiment was performed with a da Vinci robot. During 

the procedure, stereo video data was captured from a stereo laparoscope. Two data 

sequences were used. Only qualitative results are provided since the ground truth data 

was not available. The surgeon explores the abdomen in both sequences by navigating 

the laparoscope. A small amount of deformation is visible, however, the tissue is 

assumed to be static. Both sequences contain view dependent specular highlights and 

changes in illumination resulting from alterations in the camera and light source position.  
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Figure 5.3 Honeycomb noise removal from fibrescopic images. (a) Original test image captured 
by fibre bundle, (b) test image after honeycomb removal, (c) test image, (d) original image in 
Fourier domain, (e) band pass filter applied in Fourier domain (f) - top close-up of (a) and (f) - 
bottom close-up of (b). 

(a)                                                                               (d) 

(b)                                                                           (e) 

(c)                                                                              (f) 



 143

 

The first sequence is shown in Figure 5.4. The surgeon first navigates the laparoscope 

left and right (along the X axis) before moving it up and down (along the Y axis) and 

returning to the start position. The manoeuvre requires approximately 40 seconds. The 

corresponding results are provided in Figure 5.4 and Figure 5.5. Figure 5.4 illustrates 

the motion of the laparoscope and the recovered 3D structure of the tissue. It is evident 

that the map is built incrementally over time. In these figures, the 3D positions of the 

map features are drawn as a 3D ellipse, thus representing their inherent uncertainty. The 

recovered motion of the laparoscope visually corresponds to the motion observed in the 

images. The fulcrum effect is clearly visible from the orientation of the laparoscope, 

which can be used to indicate the 3D position of the surgical port. The sequence shown 

in Figure 5.4 demonstrates the incremental map building and loop closure (i.e., the 

ability to return to previously visited viewing positions). In Figure 5.4 (f), the derived 

map is meshed to create a model of the tissue surface.  

 

Figure 5.5 shows a graphic representation of the laparoscope’s estimated pose over time. 

The rotations around the X, Y and Z axes are shown in Figure 5.5 (a-c), and the 

translation in the X, Y and Z global coordinates system are shown in Figure 5.5 (d-f). 

The corresponding motion paths along the left, right, up, and down directions are 

illustrated therein. Translation in the X axis is accompanied by a rotation around the Y 

axis and translation in the Y axis is accompanied by a rotation around the X axis due to 

the fulcrum effect.  

 

The second experimental sequence is shown in Figure 5.6. In this case, the surgeon 

freely explores the abdominal cavity, navigating the laparoscope for a period of over 40 

seconds. During this exploration, the laparoscope translates and rotates around all axes. 

The corresponding results are provided in Figure 5.6 and Figure 5.7. In Figure 5.6, the 

estimated laparoscope position and the 3D SLAM map are shown, thus demonstrating 

consistent, incremental mapping and localisation. The rotation and translation of the 

laparoscope are graphically represented around the X, Y and Z axes in Figure 5.7.  
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Figure 5.4 (a-f) Results from an in vivo experiment with the SLAM framework showing the 
laparoscopic images and the SLAM coordinate system. The grey cylinder indicates the current 
position and pose of the laparoscope in the SLAM coordinate system. The position of the map 
features are represented by their elliptical uncertainty. In the laparoscopic images, the black boxes 
indicate the position of features and the red ellipses show the uncertainty in the features position. 
(a) System initialisation, laparoscope moves (b) left, (c) right, (d) up, and (e) down. (f) Shows a 
surface model. 
 

(a)                                                   (b)                                                     (c) 

(d)                                                   (e)                                                     (f) 
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Figure 5.5 Results from in vivo experiments with SLAM framework for (a-c) rotation around the 
X, Y, and Z axes and (d-f) translation along the X, Y, and Z axis. 

(a)                                                                             (d) 

(b)                                                                             (e) 

(c)                                                                             (f) 
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Figure 5.6 Results from a second in vivo experiment with the SLAM framework showing the 
laparoscopic images and the SLAM coordinate system. The current position and pose of the 
laparoscope in the SLAM coordinate system is shown by the grey cylinder. The position of the 
map features are represented by their elliptical uncertainty. In the laparoscopic images, the black 
boxes indicate the position of features and the red ellipses show the uncertainty in the features 
position. Features shown in blue are not being tracked. 
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Figure 5.7 Results for the second in vivo experiments with the SLAM framework for (a-c) 

rotation around the X, Y, and Z axes and (d-f) translation along the X, Y, and Z axes. 

(a)                                                                              (d) 

(b)                                                                              (e) 

(c)                                                                              (f) 
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5.3.2 Quantitative Validation  

In order to provide quantitative validation of the proposed SLAM framework, further 

experiments were performed with both simulated and phantom data.  

 

5.3.2.1 Simulated Experiments 

A simulation, with a virtual stereo camera moving through a texture-mapped 3D world, 

was rendered and used to validate the SLAM framework. The simulator provides known 

ground truth data of camera motion within the virtual environment, thus allowing for 

detailed quantitative evaluation. In this experiment, the motion of the camera was 

constrained such that the inter-frame pixel motion did not exceed 20 pixels. This is 

consistent with observations from in vivo data during navigation, however, rapid camera 

motion can occur.  

 

The virtual stereo camera was parameterised to replicate a stereo-laparoscope with 

similar intrinsic and extrinsic properties and a baseline of 5mm. The virtual environment 

contains a plane, which is textured with an MIS image. The image was acquired from a 

robot-assisted procedure involving the liver. This provides a realistic image rendering 

upon which to perform region tracking and SLAM, as shown in Figure 5.8. A planar 

model of the environment is used for simplicity, however, the proposed method is not 

restricted to this environment and is capable of mapping complex geometric structures. It 

is important to note: the simulation does not fully replicate the MIS environment because 

it does not model specular highlights, changes in illumination, image noise, or calibration 

error.  
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Figure 5.8 Images from simulated data illustrating translation along the X axis (a-b), translation 
along the Z axis (c-d) leading to a change in scale. (e-f) Shows rotation around the Z axis. 
 

(a)                                                                               (b) 

(c)                                                                              (d) 

(e)                                                                            (f) 
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Quantitative validation of the SLAM framework on the simulated data is shown in 

Figure 5.9. Figure 5.9 (d-f) demonstrates the results for camera translation with the 

ground truth data shown in red and the estimated position by SLAM in green. The virtual 

camera is first navigated left and right, then up and down and finally along the optical 

axis. The average error was 0.4, 0.22, and 0.1 cm in the X, Y, and Z axes, which 

corresponds to standard deviations of 0.28, 0.22, and 0.09 cm, respectively. With respect 

to the total translation in the X, Y, and Z axes, this error represents average errors of 

2.3%, 1.5%, and 0.5% of the total movement. 

  

These results demonstrate the accuracy of the SLAM framework on simulated data. The 

method can accurately localise the camera’s position. The element of error involved is 

relatively small. Sharp changes in direction of translation can cause larger errors. This is 

not surprising as the constant velocity, constant motion model does not model acute 

changes in direction. It is proven that navigating along the Z axis (away and towards the 

tissue model) introduces small errors into the X and Y estimation. These errors are a 

result of higher uncertainty along the Z position of the features caused by the small 

baseline of the stereo cameras. 

  

Figure 5.9 (a-c) displays the virtual camera rotating in pitch, yaw, and roll around the X, 

Y and Z axes, with an average error of 1.34°, 0.8°, and 0.295°, respectively. The 

associated standard deviation is 1.57°, 0.75°, and 0.32° respectively. These errors 

represent 2.23%, 1.33%, and 0.49% of the total rotation observed. Rotating around the Z 

axis introduces small errors in localisation accuracy along the X axis. This is caused 

small localisation inaccuracies of features in the image space. 
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Figure 5.9 Quantitative analysis of the laparoscopic camera motion for simulated data. The 
SLAM estimated position is shown in green, and the ground truth is shown in red for (a-c) 

rotation around the X, Y, and Z axes and (d-f) translation along the X, Y, and Z axes. 
 

 

(a)                                                                        (d) 

(b)                                                                          (e) 

(c)                                                                           (f) 
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5.3.2.2 Phantom Experimental Set-up 

The proposed SLAM system was validated on phantom data using a custom-made stereo 

fibrescope, as illustrated in Figure 5.10. It is a bespoke, laparoscopic imaging system 

with twin, 10,000 pixel coherent fibre bundles (590µm diameter, length 1.5 m, minimum 

bend radius 25mm) [255]. On the end of each fibre image guide, a graded index (GRIN) 

lens (Grintech GmbH) is cemented. The GRIN lens has a 0.5mm diameter and is capable 

of imaging an area of 35×35mm2 at a working distance of 20mm. At the distal tip, the 

fibre image guides are clamped into place with a baseline of 3.8mm. A micrometre 

precision stage is used to mount the fibres, both of which are imaged onto a single CCD 

camera (UEye, UI-2250-C/CM) with 100mm focal length using an achromatic ×10 

microscope objective lens.  

  

The stereo fibrescope presented a number of challenges in the application of SLAM. The 

system has a small working distance, small field-of-view, and is low-resolution (only 

10,000 pixels). The captured images exhibit a honeycomb structure, which is removed 

using the method described above. The small baseline makes stereo reconstruction 

difficult, and the fibre image guides are sensitive to changes in lighting. 

 
Figure 5.10 Image showing the custom-made optical configuration of the stereo fibrescopic 
system. The optical set-up includes the fibre mount, objective lens, and camera. The rigid body, 
embedded with optical markers used for validation, is shown in the top right. A close-up of the 
laparoscope tip is shown in the bottom left. 
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In order to validate the accuracy of the camera motion estimated by the SLAM 

algorithm, a rigid body with four active optical tracking markers (Northern Digital Inc, 

Ontario, Canada) was created. The rigid body, shown in Figure 5.10, is comprised of 

four optical markers on a plane with an attachment enabling it to be rigidly fitted to 

either a da Vinci laparoscope or the custom made fibrescope. The four markers define 

the Rigid Body co-ordinate system at the origin of one of the markers. The external 

optical tracking system is capable of measuring the position WTr  and orientation 

WTR of this rigid body with respect to the world co-ordinate system constantly. Hand-

eye calibration was performed using a technique similar to [26]. This provides the 

transformation tlHr  and rotation tlHR between the left camera centre and the rigid body 

coordinate system. The measured position WCr and orientation WCR of the camera centre 

with respect to the world co-ordinate system can be computed using the following 

transformation:  

W = +W W tl
Cr Tr TR Hr  (5.25) 

 
W = W tlCR TR HR  (5.26) 

 
This process provides the rotation and position of the left camera centre for validation. 

 

 

Figure 5.11 Ground truth map data. (a-b) A CT of the silicon phantom. (c-d) The CT is 
segmented and meshed to create surface models. 
 

(a)                                                                              (b) 

(c)                                                                              (d) 
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The SLAM algorithm was validated on a phantom data-set with known ground truth 

using the custom fibrescope. The ground truth data for the position and orientation of the 

laparoscope was provided using the optical tracking configuration described earlier. The 

3D geometry of the phantom was obtained from a Computed Tomography (CT) scan as 

illustrated in Figure 5.11 (a-b). The phantom was constructed using silicone and coated 

with latex paint to simulate specular reflections and tissue texture. The phantom was 

embedded with CT visible markers, which were easily identified and segmented in the 

CT scan. The location of each marker was identified during the data acquisition phase 

using a stylus. Attached to the stylus was a second rigid body which enabled the CT 

visible markers to be registered to the world coordinate system. This allows the CT 

visible and the CT scan to be registered to the camera coordinate system, thus providing 

the ground truth data for the geometry of the phantom.  

  

The CT scan was meshed to create a surface shown in Figure 5.11 (c-d), and this surface 

is compared to the point map generated by the SLAM algorithm. This requires that for 

each 3D point in the SLAM map, a corresponding point is identified on the surface of the 

CT model. Regions of interest, detected in the laparoscopic images and tracked in the 

SLAM framework, were projected into the registered CT model from the camera’s 

ground truth position (provided by the optical tracking system). The projected ray was 

traced through the 3D CT model until it intersected a surface. This point of intersection 

was taken as the corresponding point in the CT surface. 

 

5.3.2.3 Phantom Results 

Quantitative analysis of SLAM on phantom data is provided in Figure 5.12. This graph 

shows the translational motion of the laparoscope decomposed into motions along the X, 

Y, and Z axes for 1,400 frames. The ground truth data is shown in red, and the position 

of the laparoscope estimated by SLAM is shown in green. The absolute error in the X, Y, 

and Z axes was 0.19 cm, 0.07 cm, and 0.17 cm, respectively. The graph demonstrates the 

accurate recovery of laparoscopic motion using SLAM. To further illustrate the motion 

accuracy derived, Figure 5.13 displays the trajectories of the SLAM estimate and the 

ground truth in 3D. The SLAM estimate is shown in green, and the ground truth is 

shown in blue. Figure 5.13 (e-h), illustrating the trajectory over time. The position of the 

laparoscope is indicated using a green cube (SLAM) and blue cube (ground truth). The 

generated SLAM map is shown in Figure 5.13 as a surface.  
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Figure 5.12 Phantom data. Quantitative analysis of the camera trajectories decomposed into 
individual rotations and X, Y and Z translations. The ground truth is shown in red and the SLAM 
recovered camera position is shown in green for the (a-c) rotation around the X, Y, and Z axes 
and (d-f) translation along the X, Y, and Z axes. 
 

(a)                                                                            (d) 

(b)                                                                            (e) 

(c)                                                                            (f) 
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Figure 5.13 Phantom Data. (a-d) Example images from the fibrescope. (e-h) The SLAM 
recovered 3D textured surface model and camera position, ground truth trajectory (blue) and 
SLAM estimated camera trajectory (green). 
 

(a)                                                                            (b) 

(c)                                                                             (d) 

(e)                                                                            (f) 

(g)                                                                           (h) 
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The 3D surface reconstruction of the phantom data is evaluated in Figure 5.14. The 

figure shows the 3D ground truth surface data of the phantom on the left hand side and 

the 3D surface generated by the SLAM algorithm on the right. The 3D surface 

reconstructions are shown from three different views. The recovered SLAM surface is 

visually similar in shape to the ground truth CT surface in scale and orientation 

indicating accurate reconstruction. Local inaccuracies exist in the SLAM surface 

reconstruction. These inaccuracies are attributed to the use of a sparse map and surface 

meshing. The use of a sparse SLAM map means only a small number of data points are 

used to represent the surface. The surface is interpolated between these points by 

performing a Delaunay triangulation. This is a simple and relatively crude method of 

interpolation. More accurate results can be obtained by incorporating dense feature 

matching into the map. Quantitatively, the average reconstruction errors for all points in 

the SLAM map was 0.2 cm, 0.13 cm, and 0.29 cm in the X, Y, and Z axes respectively. 

During data acquisition, the surface was approximately 3.5 cm from the camera. The 

larger reconstruction error in the Z axis is a result of the small base-line of the stereo 

camera (3.8mm) and low image resolution.  
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Figure 5.14 A comparison of reconstructed 3D surface generated from CT ground truth data (a-c) 
and by SLAM (e-f). 

(a)                                                                                (d) 

(b)                                                                                   (e) 

(c)                                                                                 (f) 
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5.4 Discussions and Conclusions 

 

In this chapter, a solution is described to the 3D mapping of soft-tissue using a moving 

laparoscopic camera. This is achieved while simultaneously estimating the laparoscopic 

camera’s position and pose using a SLAM framework. The SLAM system is based on an 

EKF implementation. The experiments show that the EKF formulation is sufficient for 

creating localised 3D maps. The framework utilises the region tracking algorithm 

outlined in Chapter 4 to ensure robust tracking in a challenging environment. The 

proposed method has been demonstrated with both standard, commercially available 

laparoscopes and a custom built fibrescope with low image resolution and small field-of-

view. Pre-processing is used to remove honeycomb artefacts caused by the fibrescope. It 

is shown that a constant velocity, constant angular velocity motion model is suitable for 

both smooth hand-held or robotically-controlled laparoscopes.  

 

The method described in this chapter was quantitatively validated using a simulated data-

set with real MIS textures. Additional quantitative validation was performed using a 

silicon phantom. It is shown that the SLAM approach can incrementally build long-term 

maps, and it is capable of loop-closing (i.e., returning to previously visited regions 

without drift). This was demonstrated on soft-tissue with sparse features under a point 

light source illumination condition involving specular highlights. The main assumption 

of this work is that tissue under consideration is relatively static. This is not a realistic 

assumption for MIS. Soft-tissue is highly deformable, and dynamic scene motion must 

be considered. In the following chapters, the application of SLAM in situations involving 

dynamic tissue motion will be investigated. Chapter 7 consider some of the practical 

applications of the proposed SLAM framework to selected MIS settings.  
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Chapter 6  
 

 

 

Applications of SLAM to MIS 
 

 

 

 

 

In Chapter 5, the use of a SLAM framework was proposed for soft-tissue mapping and 

laparoscope localisation. Its performance was quantitatively evaluated on simulated and 

phantom data, and demonstrated on in vivo sequences. The system is based on the static 

environment assumption. Although this assumption is difficult to satisfy in MIS, there 

are selected anatomies where the assumption holds. This chapter considers the practical 

application of SLAM using two clinical examples - Optical Biopsy Mapping and 

Dynamic View Expansion.  

 

6.1 Optical Biopsy Mapping 

The development of new biophotonics and surgical instrumentation has been motivated 

by the quest to provide in vivo, real-time tissue characterisation and functional mapping 

during MIS. Biophotonic probes – miniaturised to fit down the instrument channel of 

standard endoscopes, are capable of revealing cellular and sub-cellular tissue 

microstructures, thus allowing excision-free optical biopsy, as shown in Figure 6.1, 

Technologies, such as miniaturised confocal laser scanning microscopes, have been used 

in conjunction with the application of contrast agents for the detection of colorectal 

adenomas, disruption in the pit pattern of the colon, angiogenesis, and neoplasia in 

Barrett’s oesophagus [256]. Such technologies have also been used to detect malignant 

disruption of the bronchial basement membrane using elastin auto fluorescence [257] 

without a contrast agent. Optical Coherence Tomography (OCT), two photon excited 
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fluorescence, and high magnification endoscopy [258] are some of the other techniques 

enabling microscopic detection and characterisation of tissue. Successful clinical trials 

using techniques that acquire detailed spectroscopic information have been carried out 

for cancer detection (e.g., using the time- or wavelength-resolved fluorescence or Raman 

properties).  

 

 

 

Figure 6.1 (a) A typical endoscopic white light image of the bronchus used for navigation, (b) the 
relative configuration of a confocal fluorescence probe when inserted through the instrument 
channel of a standard endoscope, and (c) a typical microconfocal fluorescence image showing the 
microstructure of a sample. 
 

Optical biopsy has the potential to facilitate paradigm shift in current clinical practices. 

Figure 6.2 schematically illustrates the work-flow for traditional biopsy analysis and 

potential work-flow for optical biopsy analysis. The time frame for current work-flow is 

significant and requires the patient to visit the hospital multiple times. The biopsy sample 

sent away for diagnosis also requires the interaction of several healthcare system 

stakeholders. Optical biopsy technology offers the potential for in situ, in vivo diagnosis. 

This enables the surgeon to make immediate decisions regarding patient management, 

thus dramatically reducing the time between biopsy and intervention. This is not only 

beneficial to patient health, but it is efficient, and potentially less expensive for health 

care providers, as it reduces the number of stakeholders involved in the diagnosis.  

  

The practical in vivo applications of these techniques are limited by the size of the region 

the probe can biopsy. This prevents large area surveillance and integrated functional 

mapping. These techniques provide only a small, localised region, whilst the organs of 

interest may require a large surface area to be surveyed. Unlike traditional biopsy, which 

may be marked with a scar or with ink, optical biopsies leave the tissue unmarked. This 

makes tracking the biopsy sites, for the purposes of retargeting and mapping, a 

challenging task. In addition, the endoscope, controlled by the surgeon, is mobile, and 

(a)                                                (b)                                               (c) 
5mm 5µm 
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the biopsy site can move in and out of the camera’s field-of-view. A system is presented 

in [259], which has been developed in parallel with the work in this thesis. The authors’ 

use the epipolar geometry between monocular endoscopic images to estimate the 

position of a biopsy site relative to the camera.  

 

 
Figure 6.2 Top - the clinical work-flow of traditional biopsy. Bottom – a potential new clinical 
work-flow that may be facilitated by optical biopsy. 
 

Tool tracking and registration between image modalities are a prerequisite to facilitating 

intra-operative guidance and the augmentation of the endoscopic image with functional 

imaging data. As discussed in Chapter 2, current approaches to instrument tracking 

assume the use of rigid instruments and availability of optical markers [260], which are 

inappropriate for flexible instruments such as endoscopes or biopsy probes. 

Electromagnetic tracking systems may be employed however these are susceptible to 

interference and two systems will be required to track the probe and endoscope.  

  

This work proposes the use of SLAM to track the position of the scope and to estimate 

the biopsy site relative to the scope by tracking the biopsy tool in the endoscopic image. 

When the biopsy occurs, the optical probe is typically stationary: the probe must be in 

contact with the tissue. The biopsy site can be estimated by tracking the tip of the probe. 

The position of the biopsy site is integrated explicitly into the SLAM probabilistic map, 

thus creating a 3D model of the tissue surface and spatio-temporally tracked biopsy sites. 

The endoscopic image is augmented with the position of the biopsy sites by re-projecting 
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the 3D position back into the image plane. Validation was performed on phantom data 

with known ground truth.  

6.1.1 Probe Tracking and Biopsy Site Estimation 

Estimating the position of the biopsy site is difficult because the probe obscures the site 

during the biopsy procedure and leaves no visual mark on the tissue surface. Since the 

probe must be placed in contact with the tissue during optical biopsy acquisition, 

tracking the tip of the probe enables the location of the biopsy site to be inferred. The 

flexible, optical probe is typically introduced via the instrument channel while holding 

the endoscope stationary. The current approach to surgical instrument tracking discussed 

in Chapter 2 may be suited to estimating the position of the probe, however, the 

physical constraints (flexible probe, small working area) make such estimation 

challenging. An alternative approach is to track the probe in the endoscopic image and 

estimate its position using image based techniques. The additional benefit of this 

approach is: tracking and visualisation are performed in a shared co-ordinate space, thus 

removing the requirement for additional equipment and the registration of images across 

multiple data streams.  

 

This chapter uses an approach to tool tracking outlined in [261] in order to track the 

white shaft of the tool. No changes are made to the colour of the imaging probe in this 

technique, and no markers are attached. The approach is based on background 

subtraction and colour segmentation. The position of the shaft of the probe is estimated 

using the Hough transform and the eigenvectors and eigenvalues from the moment of 

inertia. This method is used to estimate four points on the shaft; two at the join between 

the shaft and the metal tip of the probe (
1
q  and 

2
q ) and two at an arbitrary distance along 

the shaft (
1
p  and 

2
p ) as shown in Figure 6.3. These points are used in conjunction with 

prior knowledge of the probe’s geometry in order to estimate the 3D position of the 

probe tip relative to the camera.  
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                               (a)                                                                      (b)            

Figure 6.3 Estimation of the biopsy site via model-based instrument tracking. (a) The points on 
the shaft of the tool are estimated in 3D relative to the camera centre C. (b) The orientation and 
3D position of the tool are estimated. A geometric model is used to extrapolate the position of the 
tip and infer the biopsy site in 3D. 
 

The 3D position of the probe tip is estimated using a semi-model based approach. It is 

assumed the short section of the probe extending out the instrument channel can be 

modelled as rigid and that prior knowledge of the probe’s geometry is available. Given 

these assumptions, a vector is computed that describes the orientation and position of the 

shaft in 3D space. The vector is defined by two points in 3D space, which are the mid 

point of 
1 2
,P P  and the mid point of 

1 2
,Q Q  and are computed using the image points 

1 2 1 2
, , ,p p q q  and the known physical width of the probe such that a 3D point is 

represented as 

 

( ) 0 1 0 1

1 1 1 1
, , , ,u v

Z Z Z

u v

u p v p
P X Y Z P P P

fk fk

 − −  = =   
 (6.1) 

 
where 

u
fk and 

v
fk  represent the camera’s focal length, and 

0
u and 

0
v  are the principal 

points. Assuming 
1 2Z Z
P P=  the 

1Z
P can be computed using the known width of the 

probe W where 

 

( ) ( )2 2
2 2 2 2 21 1

1 2 1 2

Z Z

u u v v

u v

P P
W p p p p

fk fk

       = − + −        
 (6.2) 
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and 
1 2
,Q Q  can be computed using the same equations. Given a vector describing the 

orientation and position of the shaft of the probe, the geometric model of the tip of the 

probe is simply added to the vector to estimate the tip of the probe in 3D Rb  as 

illustrated in Figure 6.3 (b). 

 

6.1.2 Global Biopsy Mapping with SLAM 

The SLAM system described in the previous chapter is used to track the position of the 

laparoscopic camera and build a map of the environment. Each time a new biopsy is 

taken, the biopsy site Rb  is incorporated into the SLAM map. It is first estimated in the 

camera coordinate system using the approach described in the previous section. It is then 

transformed into the SLAM world coordinate system using  

 
W W R W= +b R b r  (6.3) 

 
where W

b is the biopsy site in the world coordinate system and W
R and W

r are the 

orientation and position of the camera in the global SLAM coordinate system.  

 

In this study, the 3D position of the biopsy site is defined when the surgeon activates the 

foot pedal controlling the optical biopsy probe. This 3D position is not directly measured 

or observed again for two reasons; 1) the actual biopsy site on tissue surface is usually 

occluded by the probe when the biopsy is taken; and 2) there may not be any salient 

regions of interest at or around the biopsy site to track. In the case of the latter, a simple 

2D tracking approach would fail. The strength of the proposed SLAM based approach 

lies in the position of the biopsy site, which can be updated without direct measurement. 

This is facilitated by the co-variance matrix, which models the uncertainty of all the map 

and biopsy positions. The thi  biopsy site W

i
b is inserted into the standard SLAM state 

vector, and the co-variance matrix P  is updated. The co-variance matrix is updated in 

Equation (6.4) with the partial derivatives /
i v

∂ ∂b x  of the biopsy site with respect to 

the camera position, as well as the measurement model /
i i

∂ ∂b h  and measurement 

noiseR . 
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 (6.5) 

 
where 

v
x is the position and pose of the endoscope, and 

i
y is the thi  feature in the map.  

  

The position and uncertainty of the biopsy site are then correlated to the rest of the 

features in the map and the camera position. Sequential map building is illustrated in 

Figure 6.4. This demonstrates how the biopsy sites, camera, and 3D features are 

correlated and how this information is temporally updated. At the moment when the 

biopsy site is observed, the relative position of the biopsy site to surrounding features is 

well-defined, see Figure 6.4 (b), but the uncertainty of the camera’s position may be 

high. 

  

 

                      (a)                                  (b)                                (c)                                   (d) 
 

Figure 6.4 (a-d) Schematic representation of SLAM’s sequential probabilistic mapping updates. 
The laparoscopic camera’s position c is shown in red. An ellipse represents its spatial uncertainty. 
The tissue is shown in light grey. Map features y1, y2, and y3 are represented in dark grey, and 
the biopsy site b is shown in green. (a-d) shows the sequential progression where (a) c measures 
y1 with low uncertainty, (b) c is navigated to a new position with growing uncertainty. Features 
y2 and y3 are measured and biopsy b is taken. (c) c is navigated close to y1 and positional 
uncertainty increases. (d) Feature y1 is measured and the estimated position of c is improved 
which results in improved estimate of b as it is correlated to c.  
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During subsequent camera movement during exploration, the camera re-measures these 

surrounding features in the SLAM map, see Figure 6.4 (d). As the position estimation of 

the camera improves, (i.e. with reduced uncertainty), the 3D position estimation of the 

biopsy site also improves due to its correlation with the estimated position of the camera. 

In order to facilitate intra-operative guidance and augmented reality, the biopsy sites 

1
{ ... }W W

i
b b  are re-projected from the 3D points onto the camera plane. This uses the 

estimated camera position from SLAM and the intrinsic camera parameters.  

 

6.1.3 Experimental Set-up 

The application was validated on a silicon phantom of the airway using a stereo 

laparoscope. The phantom was coated with acrylic paint to provide inter-reflection and 

realistic texture. Sponge cell structures were attached to the internal surface of the 

phantom in order to enable optical biopsies taken using a confocal fluorescence 

endoscope system (Cellvizio, Mauna Kea Technologies, Paris). The accuracy of the re-

projected biopsy sites in the image space was measured over time to validate the system. 

Ground truth data was collected using an optical tracking device (Northern Digital Inc, 

Ontario, Canada) and an experienced observer. The laparoscope’s position W

gtr  and 

orientation W

gtR was obtained using the optical tracking approach described above. An 

experienced observer who manually identified the biopsy sites on the stereo images 

obtained the ground truth of the 3D position of the biopsy sites. The camera’s intrinsic 

and extrinsic parameters were used to compute the 3D position R

gtb of the biopsy site 

relative to the camera. This enables its position in the world coordinates system W

gtb  to be 

determined as *W W R W

gt gt gt gt= +b R b r . The ground truth was obtained at each subsequent 

frame by projecting the biopsy site W

gtb  into the ground truth camera position 

( / )R R

o x gt gtu u fk x z= − b b  and ( / )R R

o y gt gtu u fk y z= − b b , where xfk and yfk are the focal 

length, and ou and ov are the principal point.  
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6.1.4 Results 

The approach to optical biopsy mapping was validated on phantom data with known 

ground truth. During a two-minute video sequence, the laparoscope was used to explore 

the airway. The laparoscope was navigated to four separate areas where biopsies were 

taken. During navigation the biopsy probe was not in the field-of-view. Once an area for 

biopsy was identified, the probe was introduced into the field-of-view in order to acquire 

a biopsy image. Six biopsies were collected in total. Biopsy sites 1-3 were collected in 

separate areas, and biopsy sites 4-6 were collected from the same area. Biopsies were re-

targeted during the exploration.  

 

The optical biopsy map is presented to the surgeon as an augmented reality visualisation. 

The accuracy of this visualisation in the image plane is also quantitatively analysed. 

Once the optical biopsy has been acquired, it is constantly re-projected onto the image 

plane - assuming it is visible in the current field-of-view. The re-projected point in the 

2D image is then compared to the ground truth position in the image. This provides a 

quantitative metric for assessing the accuracy of biopsy mapping. Results for the six 

biopsy sites are presented in Table 6.1. The augmented position of the biopsy sites has 

an average visual angle error ranging from 1.18° to 3.86°. This corresponds to 2.99% and 

10.09% of the field-of-view.  

 

There are two sources of error in the system that can affect the accuracy of the optical 

biopsy mapping; 1) the accuracy of the SLAM algorithm; and 2) the accuracy of the 

biopsy probe estimation. Inaccuracies in the localisation of the laparoscope, with respect 

to the map, will result in the biopsy site being visualised incorrectly in the image plane. 

It should be noted that the SLAM algorithm uses the laparoscopic image to perform 

localisation within an EKF framework, and it finds a solution based on the observed 

data. By using visually observed data, the localisation is likely to appear visually 

accurate even if it contains absolute errors in global localisation. The second source of 

error in the system is due to tool localisation. Accurate 3D estimation of the probe 

position, from 2D images alone, is difficult due to orientation of the tool relative to the 

laparoscopic camera. The probe is introduced to the surgical scene parallel to the optical 

axis of the camera. As a result, the 2D visual appearance of the tool can vary greatly and 

is affected by perspective visualisation. Small inaccuracies in the estimation of the probe 

in 2D are magnified when the probe position is estimated by projecting the probe model 
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into 3D. Inaccuracies in the 3D location of biopsy sites are disproportionately 

represented in 2D and can result in a large visual angle error. The proximity of the 

camera to the biopsy site affects the accuracy of biopsy position estimation where close 

proximity causes a magnification of the visual angle error. 

 

In order to provide an overall assessment of the performance of the proposed method, the 

re-projected position of biopsy site three in the image plane is visualised with respect to 

time, as shown in Figure 6.5 (a-c). In Figure 6.5 (a), the position is plotted in a spatio-

temporal visualisation, where the estimated biopsy site is shown in green, and the ground 

truth is shown in red. Figure 6.5 (c-d) directly compares the position of the augmented 

biopsy site in the X and Y image axes. It is shown that, given an accurate estimation of 

the position of the biopsy site in 3D, an accurate augmented reality visualisation can be 

created using the proposed SLAM framework.  

 

To qualitatively illustrate the benefit of optical biopsy mapping, an augmented reality 

visualisation is provided in Figure 6.6. The figure summarises the laparoscopic sequence 

showing the areas on the airway where the biopsies were taken. Figure 6.6 (a-d) shows 

the augmented reality visualisation at different stages of the procedure; as undergoing 

changes in illumination, scale, and view point. This demonstrates the clinical relevance 

and potential practical value of the proposed method. In Figure 6.6 (e), the entire 

procedure is represented, including the six biopsies sites in the global map with the 

associated biopsy images of the sponge cell structures. This demonstrates the feasibility 

of combining probe tracking and SLAM to co-register multi-modality, intra-operative 

images for enhanced navigation.  
 

Table 6.1 Average error of biopsy site estimation for the phantom experiment.  

Biopsy site number 

Augmented biopsy sites  

Visual angle error Percent of FOV 

1 2.34° 5.37% 

2 3.06° 7.58% 

3 2.22° 5.59% 

4 1.18° 2.99% 

5 2.06° 4.61% 

6 3.86° 10.09% 
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Figure 6.5 Analysis of biopsy site number three. (a) The ground truth projected position in red, 
and the estimated position in green for a short section of the procedure. (b-c) The ground truth 
projected position (red) and the SLAM estimated position (green) compared in the X and Y axes 
of the images plane. 
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6.1.5 Discussion and Conclusions 

This section proposed an intra-operative navigation system, which registers two intra-

operative imaging modalities onto a common coordinate system. AR is used to visualise 

the position of optical biopsy sites (acquired using a microconfocal probe) in 

laparoscopic images. The white light laparoscopic images and microconfocal images 

cannot be directly aligned using the standard registration techniques. The proposed 

approach to registration uses the laparoscopic images to track the microconfocal probe, 

thus enabling the location of biopsy sites to be inferred relative to the camera. Probe 

tracking is combined with a SLAM framework to enable the biopsy sites to be mapped 

onto a global coordinate space, which is consistently updated as the camera moves. The 

system is capable of tracking biopsy sites in 3D and re-projecting them into the camera 

plane. This allows the retargeting of previously examined tissue regions. Validation of 

the method was performed on phantom data, which demonstrates the practical use of the 

proposed SLAM framework for accurate biopsy re-projection. It is proven that the 

proposed system is capable of operating in a sparse feature environment without prior 

information regarding tissue geometry.  

 

The system makes a number of assumptions when estimating the location of the biopsy 

site. The probe tracking approach assumes the instrument can be segmented from the 

tissue based on colour and background subtraction. The colour of the probe may change 

when brought into contact with bodily fluids, such as blood, and the approach may be 

adversely affected by specular highlights. The probe is introduced parallel to the 

endoscopic imaging device, which leads to large changes in scale and orientation in the 

image. Small inaccuracies in probe estimation can be magnified, thus creating errors in 

3D estimation. A rigid model based approach is used to estimate the 3D position of the 

tip of the probe. This assumption holds for short sections of the shaft, however, for 

imaging tissue far away from the endoscope, a more sophisticated, flexible model, or a 

generalised model, is required.  
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6.2 Dynamic View Expansion 

This section proposes a second application of SLAM for MIS. Navigation during MIS 

has acknowledged difficulties due to the physical constraints of the endoscope or 

laparoscope. Off axis visualisation, a loss of direct 3D vision, and a limited field-of-view 

are all factors contributing to said difficulties. These cause visual-spatial disorientation 

when exploring complex anatomical structures. The problem is particularly acute in 

Natural Orifice Transluminal Endoscopic Surgery (NOTES) where a flexible endoscope 

is used to access the abdominal cavity. One of the main difficulties of navigating during 

MIS is the limited view of the surgical site provided by the imaging device.  

 

Restricted vision, caused by the above interference, effects the surgeon’s awareness of 

peripheral events and decreases visual-spatial orientation. One solution to this problem is 

an increase in the camera’s field-of-view, specifically a simple fisheye lens. This 

increases the spatial range projected onto the imaging device but it does not increase the 

resolution of the imaging device This affects the quality of the image captured. A fisheye 

lens can also distort the image and change the appearance of in vivo structures. 

Rectilinear lenses can be used to limit the affect of distortion, however, the capabilities 

of such a hardware solution are limited by the physical confines of the workspace. 

Replacing existing hardware is not ideal for hospital administrators.  

 

Dynamic view expansion, as proposed in [63], offers a potential solution to expanding 

the surgeon’s field-of-view. This approach is based in image space, does not require 

additional hardware. The field-of-view of a monocular endoscope is expanded using 

optical flow. The use of optical flow forces this approach to rely on the brightness 

constraint, which is not generally held in MIS due to the conjoined light source and 

endoscope. Large, homogeneous regions introduce additional problems.  

  

The problem of dynamic view expansion can be framed as a temporal registration 

problem where endoscopic images, captured at different time intervals, are registered to a 

common coordinate system. Image based approaches, such as mosaicing, can use 

multiple images to create a single, large image. Difficulties with mosaicing are overcome 

under constrained conditions where the environment is be assumed to be planar [262]. 
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Mosaicing has been applied a variety of anatomy (a detailed review is provided in 

Chapter 2).  

 

It is important to note that the planar assumption does not hold for general MIS 

applications. Alternatively, the proposed SLAM framework can be used because it does 

not require prior knowledge of the environment nor does it make assumptions about 

scene geometry. SLAM has a distinct theoretical advantage for temporal registration: it is 

sequential and maintains a long-term estimate of the scene’s structure, which is updated 

at each new video frame.  

  

This work demonstrated the use of SLAM for dynamic view expansion. An overview of 

the main technical components is shown in Figure 6.7 and the general concept of the 

method is illustrated in Figure 6.8. The method first generates a sparse probabilistic 3D 

map or model of the unknown surgical site and estimates the position of the laparoscope 

relative to the map. This enables the model to be augmented on the current video feed 

provided by the endoscope. This work addresses the issue of creating visually accurate, 

textured models via texture selection and blending. Visual inconsistencies created by 

augmenting the model to the laparoscopic video are also addressed with texture blending. 

Results are presented for in-vivo porcine data in order to demonstrate the potential 

clinical value. 

 
Figure 6.7 A schematic illustration of the Dynamic View Expansion system implementation 
based on the SLAM framework described in the previous chapter. 
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6.2.1 Dynamic View Expansion with SLAM 

 

The proposed method expands the effective field-of-view by incrementally creating a 3D 

model of the tissue as the laparoscope navigates the surgical scene. The approach, 

illustrated in Figure 6.8, is compared to normal visualisation with a laparoscope. When 

the system is initialised, a 3D textured model of the tissue is created and a global 

coordinate system defined. The origin of the global coordinate system is the position of 

the camera at the time of initialisation. The SLAM system proposed in the previous 

section is used to temporally register images captured by the laparoscope from different 

locations to the global coordinate system. Temporal image registration with SLAM 

creates a 3D model of the tissue and estimates the position of the laparoscope in the 

global coordinate system. This information is used to dynamically expand the camera’s 

field-of-view.  

 

AR is used to visualise the SLAM generated tissue model in the context of the intra-

operative images. The registration step is performed by SLAM, and the 6 DOF 

transformation between the model and the imaging device is the current estimate of the 

laparoscope pose in the SLAM state vector. This transformation is applied to the model 

in order to align it with the current laparoscopic field-of-view. The model is then re-

projected onto a virtual camera plane with an enlarged field-of-view. The re-projected 

image of the model is augmented to the current image captured by the laparoscope, thus 

creating an expanded view. The image captured by the laparoscope is not altered under 

this scheme while the accuracy of the augmented field-of-view is directly affected by the 

3D model’s spatial representation of the tissue and texture composition.  

 

6.2.1.1 Tissue Model 

The map generated by the SLAM system provides a model of the tissue surface and 

represents the environment with a sparse set of 3D points. This sparse representation is 

an approximation of the tissue surface and does not contain sufficient information to 

perform dynamic view expansion. A solid surface representation of the tissue is 

generated by meshing the sparse 3D points; a form of interpolation that create an 

approximated representation of the surface. To perform the meshing Delaunay 

triangulation [263] is used. This simple approach to meshing creates good surface 

representation by maximising the minimum angle of all angles in the triangulation. A 2D 
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method is used that disregards information in the Z axis. This axis corresponds to the 

initial optical axis of the camera in the global coordinate system. An example of the 

triangulation is shown in Figure 6.9 (a). The meshed model is constrained to use the 

features in the SLAM map, which should be distributed across the image to represent as 

much of the observed environment as possible. Features detected close to the perimeter 

of the image are given priority when adding new features to the SLAM map. 

 

 

 

Figure 6.9 (a) Delaunay triangulation of the points in a SLAM map with current camera position 
shown in green. (b) Selected textures for each triangle (c) the textured 3D tissue model before 
seam removal. 
 

6.2.1.2 Texture Selection 

The visual fidelity of the 3D model is fundamentally important for acceptable aesthetic 

dynamic view expansion. To this end, the 3D surface model is textured with images 

taken from the laparoscopic camera in order to recreate a realistic representation of the 

environment. A single texture is selected for each triangular face on the model. Visual 

inconsistencies emerge from using multiple images during the model texturing process. 

Artefacts can be introduced by inconsistent illumination caused by the moving light 

source, variation in brightness caused by changes in gain, registration errors in the 

SLAM framework, and interpolation of the surface between sparse points.  

 

A requirement of combined spatial and temporal information makes the formation of 

these artefacts inevitable. Visually inconsistent texturing and artefacts are reduced by 

using a small set of images to texture the model. This set is chosen by searching for 

video frames that can texture the largest number of faces in the model. Areas close to the 

edge of the image are ignored because the point light source attached to the laparoscope 

can cause poor visual quality. Image rectification is performed before the textures are 

applied to the mesh in order to remove possible distortions. This texture selection 

process effectively reduces visual artefacts in the model appearance, however, the 

resulting seams are visible where adjacent faces in the model are textured with different 

images, Figure 6.9 (c). Seams in the model are removed by blending adjacent textures. 

(a)                                                  (b)                                                 (c)             
  



 178

  

6.2.1.3 Seam Removal 

The removal of seams in composite images, in this study, is based on Poisson image 

editing [63, 264]. This approach requires the new image to be mapped onto the existing 

image by formulating it as a partial differential equation. The border on the new image is 

constrained to equal the intensities on the existing image by enforcing the Dirichlet 

boundary conditions [264]. The new texture is added to the existing texture with an 

overlap of one pixel δΩ . A large, sparse positive definite system of linear equations is 

solved iteratively in the Red, Green and Blue (RGB) channels using a conjugate gradient 

method with a pre-condition of successive over relaxation 

 
' ' '

i i i

i i j j i j
j N j N j N

N f f g N f f
δ δ∈ ∈ Ω∩ ∈ − Ω

− = + −∑ ∑ ∑  
(6.6) 

 

where 
i

N  is the set of pixels neighbouring pixel i , 
i
f  is the pixel values of the mosaic 

before updating, '

i
f  is the unknown pixel values of the updated mosaic, and '

i
g  are the 

pixel values of the new texture. The blending is performed in 2D image space, however, 

the model of the tissue is a 3D structure with arbitrary topology. 

 

Blending is applied to the arbitrary topology of the surface by mapping the textures into 

a common space. Blending is performed using a pair wise approach whilst considering 

two textures from adjacent faces. The faces share a common edge in the model space. 

Different video frames were used to texture each face captured from different camera 

poses. The resulting faces represented in image space may have varying scale and 

orientation. The triangular textures in image space must be mapped to a common space 

of consistent scale and re-orientated before blending can be applied. This is achieved by 

registering the faces in the image space using the scale and orientation of the shared 

edge. The difference in scale and orientation of the shared edge in each image defines an 

affine transformation, which can be used to register the textures. With the application of 

Poisson blending, the existing image is presumed to be the image that covers the largest 

number of faces. Before blending is performed, an affine transformation is applied to the 

new image, thus aligning and scaling it to the same coordinate system as the existing 

image. This generates a seamless, textured model of the tissue. 
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6.2.1.4 Augmented Visualisation Seam Removal 

The final step in dynamic view expansion is to augment the current 2D laparoscopic 

image with the back-projected 2D image of the model. This introduces artefacts that 

result from inconsistencies between the illumination in the current image and the model. 

The point light source attached to the endoscope causes spatial variation in illumination, 

which is concentrated in the centre of the image. Unfortunately, illumination is typically 

poor around the perimeter of the image where the laparoscopic image and back projected 

model meet. This results in a significant seam. To reduce this effect, the Possion 

approach described above was adopted. In this approach the brightness of the back-

projected image is locally adjusted to match the perimeter of the laparoscopic image.  

 

6.2.2 Experiments and Results 

The application of dynamic view expansion is demonstrated for MIS on an in vivo 

porcine experiment. Figure 6.9 shows an example of the 3D model created by SLAM 

with the camera position shown in green. In Figure 6.9 (a), the points in the map have 

been meshed to create a surface. The edges of the triangles are shown in red and the 

surface in white. Figure 6.9 (b) shows the surface mesh and the texture-mapped surface. 

Figure 6.9 (a-b) demonstrates a solid model of the surface that can be approximated 

using the sparse SLAM map. The use of sparse points creates a coarse representation of 

the surface. Although the surface model is not an accurate 3D geometric representation 

of the tissue surface, it will be demonstrated that its visual appearance can be sufficiently 

improved to enable dynamic view expansion. Figure 6.9 (c) shows the texture mapped 

3D surface before texture selection. Seams corresponding to the triangles of the mesh are 

clearly visible on the model. This 3D textured surface forms the basis of dynamic view 

expansion and augments the current view from the laparoscope using the current 

estimated position and pose of the camera, indicated in green.  

  

Figure 6.10 (a) shows a textured 3D surface model before texture selection and 

blending. Seams on the model surface are visible between textured facets from different 

images. In Figure 6.10 (b), the same surface model is shown after texture selection and 

blending. In this case, the visual appearance of the seams is greatly reduced, and the 

coarse surface model is no longer visible, thus making the conception appropriate for 

visual augmentation. Although illumination variation is visible in the model, the Possion 
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blending creates a visually smooth transition between the textures. This yields a visually 

acceptable result.  

 

As a comparison, Figure 6.10 (c) shows a textured model augmented onto the current 

laparoscopic video stream without texture selection and blending. This figure also 

highlights the seams caused by augmentation between the laparoscopic image and the 3D 

textured model. In Figure 6.10 (d), the modified surface model is augmented to the 

laparoscopic image, and the seams between the model and image are removed with 

Possion blending. The brightness values of the model are locally adjusted to reflect the 

brightness values of the pixels in the perimeter of the laparoscopic image.  

 

Dynamic view expansion for the sequence is presented in Figure 6.11, which 

demonstrates incremental mapping and the dynamic view, growing over time, as the 

abdomen is explored. The white box indicates the current laparoscopic image. Figure 

6.11 (e) indicates where the surgeon returns the laparoscope to its initial position. The 

entire textured surface model is visualised relative to this point and demonstrates the 

capability of the system to close navigation loops without incurring error accumulation 

and drift. Figure 6.11 further demonstrates the potential clinical value of dynamic view 

expansion for in-vivo abdominal exploration via temporal registration and the enhanced 

visualisation of intra-operative images.  

 

 
Figure 6.10 A visual comparison of the effect of Poisson texture blending on in vivo data. (a) 
Model without blending. (b) Model with blending. (c) Current view augmented with model 
without blending. (d) Current view augmented with model with blending. 

    (a)                                                                               (b) 

(c)   (d)   
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Figure 6.11 Five in vivo examples of dynamic view expansion performed during an exploration 
of the abdomen. The current image from the laparoscope is highlighted with a white, dashed 
border. 

(a)                                                                          (c) 

(b)                                                                        (d) 

(e)    
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6.2.3 Discussions and Conclusions 

This section documents the feasibility of using SLAM for dynamic view expansion. The 

method demonstrates the capability of temporally registering intra-operative images to a 

common, global coordinate system for intra-operative AR and enhanced visualisation. It 

is shown that a visually consistent model of the tissue surface can be generated using 

texture selection and Possion blending. It is also demonstrated that artefacts caused by 

augmenting the laparoscopic image with the model may be reduced.  

 

The proposed techniques enable the expansion of the camera’s field-of-view by using a 

model of the tissue. It should be noted that this model is a structural approximation of the 

tissue surface. Texture selection, blending, and back-projection can introduce artefacts 

into the visualisation, therefore, dynamic view expansion should not be considered a true 

representation of the scene and should be used only as a navigational aid to help the 

surgeon localise the laparoscope and navigate between target anatomies. 

 

The intended use of the system is to provide assistance to navigation and laparoscopic 

manoeuvres. It is not intended to directly guide tissue-tool interaction. As a result, the 

system can tolerate higher levels of inaccuracy in the temporal registration of the SLAM 

system. Absolute global inaccuracies registered to a world coordinate system are 

tolerable. Unlike image guided surgery, which registers two data-sets to a world 

coordinate system, dynamic view expansion using SLAM builds the augmented view 

from a single data-set, which is registered to the camera’s initial position.  

 

In summary, two practical scenarios for the use of the proposed SLAM framework have 

been demonstrated. As previously mentioned, it is important to consider realistic tissue 

deformation of the surgical site for in vivo applications of SLAM. This topic will be 

addressed in the following chapter.  
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Chapter 7  
 

 

 

Motion Compensated SLAM for 

Image Guided Surgery 
 

 

 

 

 

 

Organs of interest such as the liver and heart undergo constant deformation during 

Minimally Invasive Surgery (MIS) and the laparoscopic cameras used to observe these 

deforming organs are rarely static. To cater to both laparoscope and tissue motion, the 

SLAM framework discussed must explicitly incorporate the deformation. The challenge 

of recovering the motion of a camera in a non-rigid, dynamic environment is significant. 

In this case, the image motion, as observed by the camera, contains two coupled 

components. The first is caused by camera motion, and the second is caused by tissue 

deformation.  

 

This problem receives increasing interest from the computer vision community. 

Structure-from-Motion has been extended to non-rigid contexts such as face [167, 168], 

clothing [169], and heart [136] tracking. This approach is based on the factorisation 

method and shape basis representation where motion is modelled by rigid rotation, 

translation components, and non-rigid deformation. This approach requires batch 

processing and is not conceptually ideal for real-time applications, such as those 

encountered during MIS.  
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Simultaneous Localisation And Mapping (SLAM) requires a fixed reference against 

which error in the map and the pose of the camera is bound. Such a fixed reference is 

usually a landmark in the static world. Therefore, in dynamic environment the problem is 

ill-posed [265] as a fixed reference may not be available. SLAM has been adapted to deal 

with environments involving dynamic motion caused by cars and people. When SLAM 

is applied to such environments, it exploits the static part of the environment (fixed 

reference). This simplifies problem, thus leaving the classification of parts of the 

environment as either static or dynamic. Dynamic motions are generally treated as 

outliers. Incorporating dynamic motion into the tracking framework [266], however, 

provides a more accurate representation of the environment and enables more 

sophisticated interaction with the environment.  

 

This chapter will present a new method for simultaneous estimation of camera motion 

and dynamic structure. It extends the static SLAM framework to not simply to cope with 

dynamic motion but to learn a high-level model capable of accommodating organ 

motion. The learnt motion model is explicitly incorporated into the probabilistic SLAM 

framework, thus enabling estimation of dynamic tissue motion, including tissue outside 

the camera’s field-of-view. The basic steps of the proposed algorithm are illustrated 

schematically in Figure 7.1. This process is referred to as Motion Compensated SLAM 

(MC-SLAM). This is the first known work that estimates camera motion and completely 

dynamic structures online. The proposed method is validated with both synthetic and ex 

vivo data-sets. An in vivo application is also demonstrated. 
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Figure 7.1 Schematic of MC-SLAM system. Additional steps for dealing with dynamic map 
motion are highlighted in red including; learning the periodic motion model, predicting the 
motion model and predicting dynamic motion in the map. 
 

 

7.1 Modelling Dynamic Tissue Motion 

As mentioned earlier, dynamic tissue motion is mainly caused by respiration, cardiac 

motion, or tissue instrument interaction. The respiratory and cardiac cycles are periodic 

resulting in periodic tissue deformation during MIS. The periodic nature of tissue motion 

is exploited in this research in order to create a SLAM system capable of working in a 

totally dynamic environment. This work focuses on hepatic surgery; however, the 

proposed method can be adapted to any organ or environment where periodic motion can 

be modelled as shown in Chapter 4.  

 

It has been shown in [129] that the motion of the liver is correlated to the periodic 

motion of the diaphragm and, therefore, to respiration. During MIS, the patient’s 

breathing is often controlled by a ventilator, which regulates the frequency of respiration. 

The goal is to learn a periodic motion model for respiration and use said model to predict 

the dynamic motion of the liver. A description of how to estimate and incorporate the 

motion model into the MC-SLAM framework is provided in the following sections.  
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7.1.1 Learning the Periodic Motion Model 

 A calibrated stereo laparoscopic camera with a 5 mm baseline is used to extract the 3D 

motion of the liver. Features are detected on the liver surface, matched in the stereo 

images, and tracked temporally. The respiration model is estimated using the stereo 

laparoscope to measure the 3D motion of points on the liver, see Figure 7.2. The 3D 

positions of points on the liver are estimated by matching regions of interest in the stereo 

images and performing triangulation. The temporal motion of the 3D points is estimated 

by tracking the regions over time using the approach outlined in Chapter 4.  

 

 
Figure 7.2 Graphical illustration of respiratory modelling from organ motion. This involves: 1) 
the motion of a region or feature point (of a liver) is tracked with respect to time in 3D, 2) the 
principal axis of motion (a vector representing the dominant direction of organ motion) is 
estimated, 3) the periodic motion along this axis is examined, and a respiration model is 
estimated. 
 

During MIS, the abdomen is insufflated with carbon dioxide, which reduces organ 

contact and allows the liver to move more freely. The 3D motion of the liver relative to a 

static camera is shown in Figure 7.3 (a-c). The signal is periodic in all three axes. The 

data, and thus the modelling of respiration in the coordinate space, depends upon the 

position of the camera relative to the tissue. The observed data is in 3D space, however, 

respiration can be modelled as a 1D signal [132].  

Liver 

3D Feature 

Principal Axis of Motion 

Respiration Model 
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Previous work has shown that the motion of the liver takes place predominantly along a 

single axis that corresponds to the superior-inferior direction [132]. Each feature on the 

liver surface has a principal axis along which the feature will move, see Figure 7.2. By 

examining the motion of the feature along this axis, it is possible to infer a respiration 

model in 1D. A transformation is required between the 3D coordinate space and the 

principal axis of motion. This transformation is determined using Principal Component 

Analysis (PCA) as described in Chapter 4. The result of PCA on the data in Figure 7.3 

(a-c) is shown in Figure 7.3 (e-f). The first component of PCA, indicated in blue, is 

periodic and corresponds to respiration. The second component contains a small variance 

caused by hysteresis, and the third component contains negligible variance. 
 
 

Modelling the motion of organs due to respiration is well considered in medical imaging. 

A typical respiratory cycle is asymmetrically periodic with a longer dwell time at 

exhalation [132]. In this case, the following model can be used  

 

2

0
( ) cos ( )n t
z t z b

π
φ

τ
= − −  (7.1) 

 
where 

0
z is the position of the liver at the exhale, b is the amplitude, τ  is the respiration 

frequency, φ  is the phase and n  describes the shape or gradient of the model. Equation 

(7.1) is used to model the data in the first component of PCA (shown in Figure 7.3 (d)). 

The parameters of Equation (7.1) are estimated using Levenberg-Marquardt. This 

minimisation algorithm poses the problem as a least squares curve fitting. 
 
 

It is possible to estimate the respiration cycle using a feature at any position of the liver 

surface, assuming it can be tracked throughout the cycle. The transformation from the 

XYZ coordinate system to the respiration coordinate system is unique to each feature. 

This means features on the surface of the liver can move in independent directions while 

sharing the same respiration model.  

 

It is shown that the 1D respiratory cycle can be estimated from the observed 3D data. It 

is possible to estimate the dynamic motion within the environment using a model of 

respiration. The dynamic motion of the point on the tissue is estimated by multiplying 

the current point in the respiratory cycle ( )z t  and the inverse PCA transformation 
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matrix. The PCA transformation matrix determines a vector, or principal axis of motion, 

in 3D along which the point on the surface of the tissue moves.  

 

 
 
 

 
Figure 7.3 (a) The X, (b) Y, and (c) Z coordinates of a tracked feature on the surface of an in vivo 
liver, (d) the first, (e) second, and (f) third components from PCA. 
 

 
 
 
 
 

 (a)                                                                              (d) 

 (b)                                                                              (e) 

(c)                                                                              (f) 
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7.1.2 MC-SLAM Formulation 

The core of the proposed framework is an extended SLAM framework. It is generally 

assumed that the map is static and constant over time in SLAM. In MC-SLAM, a 

periodic motion model is introduced to compensate for the dynamic motion in the map, 

thus enabling the accurate localisation of the camera. This introduces three additional 

steps into SLAM, as shown in Figure 7.1. The first step requires an initial estimate of the 

periodic respiration model, using the method described in the previous section, to be 

learnt. The second and third steps are the prediction of the respiration motion model and 

the dynamic motion in the map. A new state vector, prediction model, and measurement 

model are introduced in conjunction with these steps. 

  

7.1.2.1 Probabilistic Framework 

MC-SLAM is implemented using an Extended Kalman Filter (EKF). The state vector x̂  

is composed of three elements representing the camera, the periodic respiration model, 

and the map. P is the square covariance matrix. 
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 (7.2) 

  
The camera’s state vector ˆvx  contains the position Wr , orientation WR

q , translational 

velocity Wv , and angular velocity Rw  of the camera. The periodic respiration model m̂  

is represented in the state by the parameters derived from Equation (7.1) such that  

 
2

0
( ) cos ( )nz t z b α= −  (7.3) 

 
where /tα π τ= , t  is the time step, 

0
z is the exhale position of the liver, b  is the 

amplitude, τ  is the frequency, and 3n = , in accordance with [132]. The phase φ is 

ignored since the system is initialised at 0φ = . 
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α

τ

      =        0

m
b

z

  ˆ
  =    

i
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y

eig
 (7.4) 

 
The features in the map

1
ˆ ˆ( )

i
y y⋯ are represented in the state by two components, each of 

three elements are taken from the PCA transformation. In Equation (7.4), 

( , , )X Y Z=y represents the mean position of the feature in 3D space during a 

respiration cycle, and ( , , )=
x y z

eig eig eig eig  are the eigenvectors which describe the 

transformation from 3D space to the periodic respiration model or the first component of 

PCA. These eigenvectors can be used to define a vector along which the feature will 

move in 3D space. The feature’s position along the vector is determined by the phase of 

the respiration cycle.  

 

The system is initialised once the periodic respiration model has been learnt. During this 

learning phase, it is assumed that the camera is static or an accurate positional estimate is 

available. A full cycle is detected by normalising the data in the principal component, 

smoothing using a moving average and detecting points where the signal changes from 

positive to negative or negative to positive. This learning phase can be reduced by 

combining the frequency and phase data from the ventilator with the 3D amplitude and 

exhale position acquired from the image data. 

 

7.1.2.2 State Prediction Model 

The camera motion is predicted using a standard constant velocity, constant angular 

velocity model. The state prediction model requires the additional step of predicting the 

periodic respiration and, subsequently, the motion in the map. The prediction model m

v
f  

and process noise covariance m

v
Q for the periodic respiration m̂  are defined as 
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where 

τ
Φ is the noise in the frequency, 

b
Φ is the noise in the amplitude, and 

0
z

Φ is the 

noise in the exhale position.  

 

7.1.2.3 Measurement Model 

The measurement model is used to transform the state space into the measurement space. 

In MC-SLAM the features in the map are measured relative to the predicted position of 

the camera. As previously described, a feature’s position in the camera coordinate system 

is computed using the predicted camera’s position Wr  , rotation RWR , and the position 

of the feature in 3D W

i
y , such that ( )R RW W W

i i
= −y R y r . The predicted position of the 

feature in the world coordinate system is calculated using the predicted point in the 

respiration cycle and ˆ
i
y , such that 2

0
( cos ( ))W n

i
z b α= − +y eig y . The measurement 

model is therefore 

2

0
( ( cos ( )) )R RW n W

i
z b α= − + −h R eig y r  (7.6) 

 

and the partial derivatives of the measurement model for the periodic respiration model 

m̂ are  
 

1ˆ
( sin( )cos( ) )RW nd
nb

d
α α

α

−=
m

R eig  (7.7) 

  

ˆ
0

d

dτ
=

m
 (7.8) 

  

ˆ
(cos( ) )RW nd

db
α= −

m
R eig  (7.9) 

  

0

ˆ RWd

dz
=

m
R eig  (7.10) 

 
The features are projected into the image plane and matched using active search. 
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7.1.2.4 Feature Initialisation 

Once the system is initialised, new features can easily be added to the state when the 

camera is moving. To obtain accurate estimates of y and eig , features are added after 

observing their motion in the 3D world for one respiratory cycle. The motion of a 

partially initialised feature is determined by tracking the feature relative to the camera 

position. The feature position is transformed into the world coordinate system using the 

camera’s position in the state vector.  

 

7.2 Experiments and Results 

In order to validate the theoretical and practical value of MC-SLAM, the method is 

quantitatively evaluated on simulated and ex vivo data with induced deformation. To 

demonstrate its practical application, in vivo data from a porcine experiment, is used.  

 

7.2.1 Simulated Experiments 

For detailed quantitative validation with ground truth, a simulated data-set was created 

with known camera motion, tissue location, and respiration cycle. An image of the liver 

and gall bladder was textured onto a curved 3D surface. Periodic motion was applied to 

the surface using Equation (7.1) and the parameters in Table 7.1. A virtual stereo 

camera is navigated through the simulated environment along the X, Y, and Z axes, thus 

capturing images of the dynamic surface motion. Gaussian noise is added to the images.  

 

Validation of the dynamic map’s accuracy and the methodology employed to recover the 

respiration model from laparoscopic data are provided in Figure 7.4 (a) where the model 

for respiration is shown in green, and the ground truth is shown in red. The graphs are 

similar, and the extracted parameters for respiration are compared to the ground truth in 

Table 7.1. These parameters provide the initial estimate of the model and are 

incorporated into the EKF framework.  

 

The recovered position of the camera is quantitatively evaluated in Figure 7.4 (b-g). 

Figure 7.4 (b-d) shows the motion of the camera accurately recovered using MC-SLAM 
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(green) in all axes of motion as well as a comparison to the ground truth (red). The mean 

position error is 0.25 cm with a standard deviation of 0.19 cm. The error in the system is 

attributed to sharp changes in acceleration when the camera begins and ceases to move 

and is similar to the results in Chapter 5. These changes are not well modelled by the 

constant velocity, constant angular velocity motion model. The recovered motion of the 

camera using static SLAM is shown in Figure 7.4 (e-g) where the ground truth is shown 

in red and the static SLAM position estimate is shown in blue. It is clear, as 

demonstrated in Figure 7.4 (e-g), there is a periodic error in the position estimate when 

static SLAM is used. This is further confirmed by the mean position error, which is 1.31 

cm with a standard deviation of 0.6 cm. The motion in the simulated map follows the Z-

axis resulting in the error in camera position shown in Figure 7.4 (g). The roll, pitch, 

yaw, and rotations are accurately recovered by both systems. 

 

Figure 7.5 illustrates the results of MC-SLAM on simulated data when compared to 

static SLAM. The figure shows the MC-SLAM and SLAM coordinate system from an 

aerial perspective looking down the Y axis. The camera is navigated along the X axis, 

and both camera and map motion may be seen in the figure. Figure 7.5 (a-b) shows the 

MC-SLAM coordinate system at frame zero and 500, respectively. Figure 7.5 (a) shows 

the position of features in the map at full inhale, and Figure 7.5 (b) shows the position of 

features in the map at full exhale. The map evidently contains dynamic motion. Figure 

7.5 (a) and Figure 7.5 (b) show both camera motion and the estimation of the dynamic 

feature positions, including when these features are beyond the field-of-view. Feature 

positions estimated outside the field-of-view are delineated using a yellow surrounding, 

and features measured by MC-SLAM are shown using a red surrounding. The motion of 

the camera is recovered when tissue and camera motion are observed together.  

 

Figure 7.5 (c-d) illustrates the above situation for static SLAM. The map remains static 

throughout the sequence, and there is a periodic error in the Z axis. This error 

corresponds to the motion in the map along the Z axis. The MC-SLAM map is denser 

than the static SLAM map. In MC-SLAM, a feature is only added to the map once it has 

been observed for one respiration cycle. As a result, some features near the perimeter of 

the image cannot be tracked continuously for one respiration cycle, thus only allowing 

features in the centre of the image to be added to the map. Static SLAM, notably, does 

not have this requirement and adds features that move outside the current field-of-view 

as a result of motion in the map. 
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Figure 7.4 Simulated data. (a) Respiration model; observed data, respiration model, and ground 
truth. (b-d) Laparoscopic position for MC-SLAM (green) and ground truth (red). (e-g) 
Laparoscopic position static SLAM (blue) and ground truth (red). 
 

   (b)                                                                          (e) 

   (c)                                                                          (f) 

   (d)                                                                          (g) 

   (a) 
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Table 7.1 Periodic respiration model parameters for simulated data.  
 τ   

(Frames) 
b   

(cm) 

z  

(cm) 

Simulation Estimated 32.38 3.09 0. 95 

Simulation Ground 

Truth 
31.83 3 1 

 

 
 

Figure 7.5 Simulated data for MC-SLAM evaluation at (a) frame zero and (b) frame 500 
illustrating the dynamic map and motion compensated camera estimation (green). Static SLAM at 
(c) frame zero and (d) frame 500 illustrating the static map and erroneous camera estimation 
(blue). Tracked features are shown using a red boarder and estimated feature positions with a 
yellow border. 
 
Figure 7.6 illustrates the results of MC-SLAM and static SLAM for a simulated 

sequence of over 1600 frames. The top row of each figure shows the simulated 

laparoscopic images: the position of tracked features is indicated using a black square. 

An ellipse demarcates the uncertainty in the estimated position. The ellipse is coloured 

red if the feature is successfully tracked, blue if no match can be found, and yellow if no 

attempt is made to match the feature. Attempts to match features are only made if the 

feature is visible in the left and right stereo images and not near the image perimeter. 

Only a selected, pre-defined number of features are matched at each frame to improve 

computational efficiency. In the MC-SLAM coordinate system, the estimated camera 

position is depicted using a green cube: a green line illustrates its trajectory. In the static 

SLAM coordinate system, the estimated camera position is shown with a blue cube: a 

blue line illustrates its trajectory. In both systems, the ground truth position is depicted 

using a red cube: a red line illustrates its trajectory. Figure 7.6 (a-f) shows the results for 

static SLAM. The blue line showing the static SLAM camera trajectory oscillates with a 

periodic error and is clearly different from the red line representing the ground truth. In 

Figure 7.6 (g-l), the green line representing the MC-SLAM camera motion is almost 

indistinguishable from the ground truth. 
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Table 7.2 Periodic respiration model parameters for ex vivo data.  

 τ   

(Frames) 
b   

(cm) 

z  

(cm) 

Ex Vivo 

Estimated 
52.47 0.85 0.33 

Ex Vivo 

Ground Truth 
52 0.9 0.3 

 
 

7.2.2 Ex Vivo Experiments 

To validate the MC-SLAM algorithm on real tissue, an ex vivo experiment was set-up 

with induced tissue motion. The ground truth position of the stereo laparoscopic camera 

was obtained using the approach outlined in Chapter 5. An ex vivo porcine liver sample 

was used. In order to induce realistic motion, as encountered during MIS, the sample was 

placed on a sliding tray. A custom made device, shown in Figure 7.7, was attached to 

the tray to induce periodic motion that simulates respiration. The device consisted of a 

stepper motor and a cam. The cam was designed to obtain a profile, which models 

Equation (7.1) defining the parameters z , n , and b . The stepper motor was controlled 

by a computer and determines the τ  parameter. The parameters used in the experiment 

are detailed in Table 7.2. This experimental set-up provides ground truth data for the 

camera’s position and the dynamic motion of the environment.  

 

 

Figure 7.7 Custom made mechanical device used to replicate periodic respiration during ex vivo 
experiments. The motion is controlled by a motor, which is connected to the cam. The profile of 
the cam is designed to create an asymmetric motion by pushing the shaft away from the centre of 
the cam. The spring holds the shaft in place and maintains contact with the cam. A tray is attached 
to the end of the shaft upon which the tissue is fixed. 
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Quantitative evaluation of respiration modelling is provided in Figure 7.8 (a) and in 

Table 7.2. These results demonstrate how the principal axis of motion resulting from 

respiration can be recovered when the motion pursues an arbitrary direction. The 

recovered parameters in Table 7.2. are used to initialise the respiration model EKF in the 

SLAM framework. These parameters also indicate the accuracy of the dynamic motion 

in the map.  

 

Quantitative evaluation of the MC-SLAM algorithm is provided in Figure 7.8. The 

estimated camera position using MC-SLAM (green) is compared to ground truth (red) in 

Figure 7.8 (b-d). Figure 7.8 (e-g) demonstrates the results for static SLAM applied to 

the same sequence. The recovered motion of the camera using MC-SLAM closely 

follows the ground truth. Static SLAM periodically oscillates away from the ground 

truth. The mean error for MC-SLAM and static SLAM is 0.11 cm with a standard 

deviation of 0.07 cm and 0.56 cm with a standard deviation of 0.25 cm respectively. 

Rotations are accurately recovered by both systems. The MC-SLAM system does exhibit 

some drift after initialisation. This is shown in Figure 7.8 (d) by the motion along the Z-

axis.  

 

It was observed that static SLAM is more susceptible to data association errors in 

dynamic environments. This is due to the position of features that cannot be accurately 

predicted in the image space resulting in active search failure. This is particularly 

problematic on visually repetitive data, such as the liver surface, where regions appear 

similar. A data association error occurs in static SLAM between frames 800 and 1000. 

This is demonstrated in Figure 7.8 (e-g) by the change in the osculation of the error. 

 

The performance of MC-SLAM is demonstrated on ex vivo data in Figure 7.9. Figure 

7.9 (a-e) shows the intra-operative laparoscopic image with features tracked by the 

SLAM system. Figure 7.9 (f-j) demonstrates the MC-SLAM coordinate system where 

the estimated camera position is shown as a green cube for MC-SLAM, as a red cube for 

ground truth, and a blue cube for static SLAM - with corresponding trajectories shown as 

lines. Figure 7.9 (k-o) illustrates the intra-operative laparoscopic images augmented 

with a virtual tumour, which is manually and rigidly registered to the MC-SLAM map. 

The tumour is visualised using Augmented Reality (AR). AR is implemented with 

Inverse Realism [43] to improve depth perception of the virtual object.  
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The laparoscopic image shown in Figure 7.9 (a-b), and associated visualisations, are 

captured from a static laparoscope and illustrate the position of the tumour at full exhale 

and full inhale. It is clear in the MC-SLAM coordinate space in Figure 7.9 (f-g) that the 

camera is estimated as static, however, the static SLAM system contains camera motion. 

The dynamic nature of the map and the AR is illustrated in Figure 7.9 (k-l) where 

Figure 7.9 (k) shows the position of the tumour at full exhale, and Figure 7.9 (l) shows 

its position at full inhale from a static camera.  

 

The remaining laparoscopic video sequence contains tissue motion and camera motion. 

In the MC-SLAM coordinate system, the camera motion results in new features added to 

the map, see Figure 7.9 (h-j), and demonstrates incremental mapping and the ability to 

add new features on the fly. In Figure 7.9 (o), the laparoscope navigates away from the 

tumour, and its position is visualised outside the current field-of-view using Dynamic 

View Expansion, as described in Chapter 6. This illustrates the capability of the MC-

SLAM to predict the dynamic 3D position of tissue, including when it is not directly 

measured with inter-operative imaging. 
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Figure 7.8 Ex vivo data. (a) Respiration data showing the observed data, respiration model and 
ground truth. (b-d) Laparoscopic position for MC-SLAM (green) and ground truth (red). (e-g) 
Laparoscopic position static SLAM (blue) and ground truth (red). 
 

   (d)                                                                          (e) 

   (b)                                                                          (e) 

   (c)                                                                          (f) 

   (a) 



 201

 

F
ig

u
re

 7
.9

 E
x
 v

iv
o
 d

at
a.

 (
a
-j

) 
L

ap
ar

os
co

pi
c 

im
ag

e 
w

it
h 

as
so

ci
at

ed
 M

C
-S

L
A

M
 m

ap
 a

nd
 l

ap
ar

os
co

pe
 c

am
er

a 
po

si
ti

on
s;

 M
C

-S
L

A
M

 (
gr

ee
n)

, 
st

at
ic

 S
L

A
M

 
(b

lu
e)

 g
ro

un
d 

tr
ut

h 
(r

ed
).

 (
k

-o
) 

Il
lu

st
ra

ti
on

 o
f 

Im
ag

e 
G

ui
de

d 
Su

rg
er

y 
w

it
h 

pr
e-

op
er

at
iv

e 
da

ta
 v

is
ua

li
se

d 
in

tr
a-

op
er

at
iv

el
y 

us
in

g 
In

ve
rs

e 
R

ea
li

sm
 [

43
].

 (
a
-b

) 
ar

e 
im

ag
es

 ta
ke

n 
fr

om
 a

 s
ta

tic
 c

am
er

a 
an

d 
ill

us
tr

at
e 

th
e 

m
ot

io
n 

of
 th

e 
li

ve
r 

re
su

lt
in

g 
fr

om
 r

es
pi

ra
ti

on
 w

he
re

 (
a
) 

is
 i

nh
al

e 
po

si
ti

on
 a

nd
 (

b
) 

is
 e

xh
al

e 
po

si
tio

n.
 

(c
-e

) 
Il

lu
st

ra
te

 c
om

bi
ne

d 
la

pa
ro

sc
op

e 
an

d 
ti

ss
ue

 m
ot

io
n.

 (
o
) 

la
pa

ro
sc

op
e 

m
ot

io
n 

re
su

lt
s 

in
 t

he
 ta

rg
et

 m
ov

in
g 

ou
ts

id
e 

th
e 

cu
rr

en
t f

ie
ld

-o
f-

vi
ew

. T
he

 d
yn

am
ic

 
ta

rg
et

 p
os

it
io

n 
is

 e
st

im
at

ed
 r

el
at

iv
e 

to
 th

e 
cu

rr
en

t p
os

iti
on

 o
f 

th
e 

la
pa

ro
sc

op
e 

an
d 

vi
su

al
is

ed
 u

si
ng

 v
ie

w
 e

xp
an

si
on

 d
es

cr
ib

ed
 in

 th
e 

pr
ev

io
us

 c
ha

pt
er

. 
  

 

 



 202

 

7.2.3 In Vivo Experiments 

An in vivo experiment was carried out on a MIS sequence collected during a porcine 

experiment. During the procedure, the surgeon navigates the laparoscope in a circular 

manner around the abdomen to view the liver and surrounding organs. Periodic tissue 

motion, resulting from respiration, is clearly visible during the procedure. 

 

The ground truth data was not available for the in vivo study. The estimated respiration 

model is shown in Figure 7.10 (a). The estimated tissue displacement resulting from 

respiration is 1.08 cm, and the respiration rate is estimated at 20.83 breaths per minute. 

Figure 7.10 (b-d) shows the estimated camera motion in the X, Y, and Z components 

using MC-SLAM and in Figure 7.10 (e-g) for static SLAM. The static SLAM camera 

position contains visible periodic oscillation that is attributed to tissue motion.  

 

Figure 7.11 illustrates the intra-operative laparoscopic images with tracked MC-SLAM 

features, the MC-SLAM coordinate system, and the intra-operative images with AR 

visualisation. The AR visualisation is created by manually and rigidly registering a 

virtual tumour to the MC-SLAM map. Figure 7.11 (k-l) demonstrates intra-operative in 

vivo images captured using a static laparoscope. Figure 7.11 (k) displays the tissue 

position at the full exhale position, and Figure 7.11 (l) shows the tissue at the full inhale 

position of the respiration cycle. The augmented tumour’s change in the position 

demonstrates the dynamic nature of the MC-SLAM map and progression beyond the 

static world assumption. In Figure 7.11 (m-o), the surgeon navigates the laparoscope to 

explore the abdomen. Throughout this exploration, the tumour is displayed in a location 

being visually consistent with the surrounding tissue. This is achieved in the presence of 

both laparoscopic and tissue motion. 
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Figure 7.10 In vivo data. (a) Respiration data showing the observed data and respiration model. 
(b-d) Laparoscopic position for MC-SLAM (green). (e-g) Laparoscopic position static SLAM 
(blue) 
 

   (d)                                                                          (g) 

   (b)                                                                          (e) 

   (c)                                                                          (f) 

   (a) 



 204

 

F
ig

u
re

 7
.1

1
 I

n
 v

iv
o

 d
at

a 
sh

ow
in

g 
la

pa
ro

sc
op

ic
 i

m
ag

es
 (

a
-e

) 
w

it
h 

fe
at

ur
es

 t
ra

ck
ed

 i
n 

th
e 

SL
A

M
 s

ys
te

m
. 

(f
-j

) 
T

he
 S

L
A

M
 c

oo
rd

in
at

e 
sy

st
em

 i
ll

us
tr

at
in

g 
th

e 
m

ap
 f

ea
tu

re
s 

an
d 

th
e 

M
C

-S
L

A
M

 la
pa

ro
sc

op
e 

es
tim

at
e 

in
 g

re
en

 a
nd

 th
e 

st
at

ic
 S

L
A

M
 e

st
im

at
e 

in
 b

lu
e.

 (
k

-o
) 

Il
lu

st
ra

ti
on

 o
f 

Im
ag

e 
G

ui
de

d 
Su

rg
er

y 
w

it
h 

pr
e-

op
er

at
iv

e 
da

ta
 v

is
ua

li
se

d 
in

tr
a-

op
er

at
iv

el
y.

 U
si

ng
 I

nv
er

se
 R

ea
li

sm
 [

43
].

 (
k

-l
) 

sh
ow

 a
 s

ta
tic

 l
ap

ar
os

co
pe

 a
nd

 t
he

 t
is

su
e 

at
 (

k
) 

ex
ha

le
 a

nd
 (

l)
 i

nh
al

e 
po

si
ti

on
. (

m
-n

) 
co

m
bi

ne
d 

la
pa

ro
sc

op
e 

an
d 

ti
ss

ue
 m

ot
io

n.
 (

o
) 

la
pa

ro
sc

op
e 

m
ot

io
n 

re
su

lt
s 

in
 th

e 
ta

rg
et

 m
ov

in
g 

ou
ts

id
e 

th
e 

cu
rr

en
t f

ie
ld

-o
f-

vi
ew

.  
 



 205

 

 

7.3 Discussions and Conclusion 

This chapter presented MC-SLAM, a new approach to camera localisation and tissue 

structure estimation in a periodically deforming environment. The system extracts a 

model of respiration from intra-operative laparoscopic images and explicitly incorporates 

this high-level periodic model into the SLAM framework. This enables the method to 

predict and anticipate the dynamic motion of the tissue. The correlation between 

respiration and organ motion is exploited, thus enabling the estimation of organ motion, 

including when not directly observed by the intra-operative images. The system 

estimates the dynamic structure and camera motion both sequentially and 

simultaneously. This allows the system to be used for real-time applications, which is a 

fundamental prerequisite for IGI. Validation of the proposed method has been performed 

on simulated and ex vivo data, and its clinical relevance has been demonstrated on in vivo 

data. The current system requires an initialisation phase of at lease one respiratory cycle. 

Although this initialisation is short (2.88 seconds on in vivo data), removing or 

shortening this phase will make transition to the operating theatre more feasible. This 

may be possible by reformulating the SLAM problem, from a map containing 3D points, 

to a map with 3D vectors. This places additional constraints on the system and may be 

well-suited to deforming surfaces.  

 

The current system uses a single model to represent the frequency and amplitude of 

respiration and organ motion. Initial results indicate this is suitable for modelling a 

region of an organ, however, the amplitude of organ motion is a function of the organ-

specific tissue elasticity and distance to the diaphragm. The organ motion is 

approximated as locally linear. For the liver example, this model can be improved by 

incorporating hysteresis in the tissue motion. The dynamic tissue motion can be caused 

by a combination of both cardiac and respiratory cycles. The current model will not work 

when large instrument-tissue deformation is present. The work in this thesis has made 

the first useful step towards simultaneous localisation and mapping in a dynamic 

environment with repetitive tissue deformation, despite these challenges. Future work 

will focus on developing models with feature-specific amplitude and multiple frequency 

models with non-linear motion paths. 
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Chapter 8  
 

 

 

 

Conclusions and Future Work 
 

 

 

 

 

8.1 Contribution of the Thesis 

The efficacy and clinical benefits of image-guided intervention are well established for 

procedures where manageable tissue motion, such as neurosurgery and orthopaedics, is 

present. Pre-operative data can be registered to patient anatomy and visualised intra-

operatively in these procedures. This enables the surgeon to visualise anatomical 

structures below the surface of the tissue and helps guide the surgeon, thus avoiding 

critical structures and effectively identifying the target anatomy.  

 

There are many situations in cardiac, abdominal, and gastrointestinal procedures where 

intra-operative visualisation of pre-operative data would be beneficial. Take, for 

example, instances involving the guidance of tumour resection margins in hepatic 

surgery and the identification of critical landmarks, such as the coronary artery in 

coronary bypass surgery. Large scale tissue deformation is common in these procedures 

prohibiting the accurate registration and visualisation of pre-operative and intra-operative 

images. Tissue deformation can be caused by the respiratory and cardiac cycles, tissue-

tool interaction, organ shift, and muscle contraction during MIS. In order to successfully 
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co-register pre- and intra-operative data, tissue deformation must be estimated and 

predicted in vivo, in situ. Accurate estimation of tissue deformation and laparoscope 

localisation using intra-operative imaging are the main objectives of this thesis.  

 

The work in this thesis has focussed on estimating tissue deformation from laparoscopic 

and endoscopic images. This approach is attractive because it does not require additional 

equipment in the operating theatre, surgeons are familiar with the imaging modality for 

navigation in MIS, and the images provide a coordinate space in which to visualise the 

pre-operative data using augmented reality. The task of estimating tissue deformation 

from laparoscopic and endoscopic cameras, however, is challenging, particularly, when 

combined with camera motion. The work presented in this thesis has advanced state-of-

the-art procedures with the following key contributions: 

 

A boosted tracking-by-detection framework for recovering tissue deformation using 

systematic image descriptor evaluation, selection, and fusion; 

 

An algorithm for learning contextually specific information to improve tissue tracking 

online using unlabeled data; 

 

A SLAM system to simultaneously estimate laparoscope motion and 3D tissue structure 

using stereo cameras and robust region matching;  

 

Optical Biopsy Mapping; A method for registering multi-modality images to a common 

coordinate system for Augmented Reality enhanced navigation; 

 

Dynamic view expansion; Intra-operative image enhancement using photorealistic 

models generated via SLAM; 

 

A novel Motion Compensated SLAM (MC-SLAM) algorithm for laparoscopic camera 

localisation and dynamic mapping in a periodically deforming environment.  

 

 

Chapter 3 investigates the use of region tracking to estimate tissue deformation from a 

static camera. Current computer vision-based approaches to tissue tracking are mainly 

focused on recursive techniques, which do not address re-initialisation after tracking 
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failure and are susceptible to error propagation. A tracking-by-detection approach is 

proposed for deformable tissue tracking which does not require temporal information. 

The performance of existing region descriptors was evaluated with respect to tissue 

deformation. Their relative performance was determined, and a multi-descriptor fusion 

framework was proposed in order to boost tracking performance. The framework used a 

supervised machine learning approach to select a subset of complementary, high 

performing descriptors and fused them in a Bayesian network. The approach 

demonstrated increased performance and re-initialisation of region tracking after failure. 

The performance of the proposed method was quantitatively evaluated on simulated data 

and on in vivo data. 

 

An approach to tissue tracking was proposed in Chapter 4, which learned context-

specific information online to improve performance. This method increased region 

density and persistency, but it also remained robust to occlusion and deformation. The 

region tracking problem was formulated as a classification approach, and a practical 

solution was proposed for learning from unlabelled data. The algorithm was able to learn 

what information is most discriminative to separate a region from its surroundings. The 

method then used this information to improve the region tracking. It was demonstrated 

that the proposed method was capable of learning sufficiently discriminative information 

such that the tracker was robust to deformation, changes in scale and orientation, 

occlusion, and smoke resulting from diathermy. This affirms that online learning can be 

used to estimate deformation from intra-operative images. The practical application of 

this technique was demonstrated by decoupling and modelling respiratory and cardiac 

motion. 

  

One of the main contributions of the thesis is the investigation of vision-based algorithms 

to simultaneously estimate the position of the laparoscopic camera and the structure of 

tissue. IGI requires this information to be available online and, preferably, to be extracted 

in real-time. To achieve this, the use of a stereo SLAM algorithm for MIS was proposed. 

Chapter 5, demonstrated the use of SLAM on tissue that has little or no deformation and 

showed that it may be used to accurately recover the structure of the tissue and position 

of the laparoscope. The method was robust to error propagation when revisiting 

previously viewed areas, and was able demonstrate loop closure. The method was 

validated on simulated and phantom data and applied to in vivo data captured during a 

robotically-assisted procedure.  



 209

 

In Chapter 6, two practical, clinical applications for SLAM in MIS were proposed - 

Optical Biopsy Mapping and dynamic view expansion. Optical Biopsy Mapping is an 

intra-operative navigation system registering two intra-operative imaging modalities into 

a single coordinate system. Data from a micro-confocal imaging probe was visualised 

with augmented reality for intra-operative guidance and the re-targeting of biopsy sites. 

The feasibility of inferring the optical biopsy site using probe tracking in the 

laparoscopic image was demonstrated. It was shown that the biopsy site’s position can be 

estimated beyond the current field-of-view by representing the biopsy site stochastically 

in a probabilistic framework. Dynamic view expansion enhances visualisation of intra-

operative images to reduce disorientation during surgery and aid navigation. In this 

work, it was shown that the field-of-view of a laparoscopic camera could be dynamically 

extended using a 3D textured model of tissue generated from image data. The visual 

fidelity of the augmented intra-operative visualisation was improved through the use of 

texture selection and blending.  

 

A significant contribution of this thesis is the reformulation of the SLAM problem 

without the static world assumption, as detailed in Chapter 7. Instead of using a static 

spatial frame of reference, the integration of periodic motion models based on biological 

signals in the SLAM framework, was proposed. This Motion Compensated SLAM (MC-

SLAM) framework is capable of performing dynamic mapping and camera localisation 

in non-static environments. This addresses a fundamental problem that has prohibited the 

application of existing SLAM techniques to deforming tissue in MIS. Although the 

constraints imposed, particularly in the periodic assumption of the motion model, are still 

strong, this was the first attempt, to the author’s knowledge, that used SLAM in dynamic 

in vivo environments.  

 

8.2 Potential Future Work 

Throughout this thesis, computer vision methods for the estimation of the morphological 

structure of tissue and the localisation of intra-operative imaging devices during MIS 

have been discussed. Using intra-operative laparoscopic images to estimate tissue 

deformation is a challenging task. The robustness of computer vision techniques in MIS 

is affected by a number of factors including image quality, occlusion, tissue deformation, 
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changes in scale and orientation, specular highlights, rapid camera motion, and the 

paucity of salient image features. The paucity of features is a significant factor that limits 

the methods used throughout this thesis. Organs that are well textured and contain 

surface features, such as vasculature, are well-suited to region tracking. Many areas of 

tissue, however, are homogenous and provide no distinctive, traceable information. In 

such cases, the current region tracking algorithms cannot be applied and alternative 

solutions must be proposed.  

 

Time-of-flight cameras [49] and structured light [47] [48] are potential solutions for 

dealing with feature paucity. Unfortunately, these methods only produce structural 

information and offer no additional data for use when tracking a given point on the tissue 

surface. Techniques such as narrow band imaging [267], which has the capacity to 

extract more information than standard laparoscopic images, may offer a way forward. 

Regardless of the optical devices employed, the captured images can be adversely 

affected by interaction between the device and the MIS environment. Lens-tissue contact 

can obstruct the view, effect illumination, and can prevent the device from capturing 

useful information. It can also lead to soiling of the lens and occlusion. It is not feasible 

to model all the scenarios experienced during MIS nor is the use of computer vision 

practical in extreme situations such as lens obstruction. In these cases, recovering from 

system failure is essential to enable the surgeon to continue the procedure. This 

represents a significant research challenge in delivering practical and sustainable vision-

based systems to the operating theatre, particularly for deforming environments.  

 

In this thesis, it has been demonstrated that SLAM, formulated without the static world 

assumption, can be performed on periodically deforming tissue. Information from 

additional sensors such as gyroscopes or optical trackers may improve the camera 

position estimate, assuming this additional hardware can be incorporated into the 

surgical theatre.  For deformation correlated to the respiratory or cardiac cycles, 

information from the ventilator, or ECG, can be incorporated to constrain the problem 

[137]. Tissue deformation; however, can also be caused by instrument-tissue interaction 

and involuntary muscular contraction. Within the MC-SLAM framework, small 

deformation may be identified as outliers. One of the major challenges of IGI for MIS is 

the theoretical treatment and modelling of large scale tissue deformation. This is likely to 

require prior knowledge of tissue characteristics.  
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Prior knowledge of patient-specific tissue morphology can be acquired from pre-

operative data and represented using a variety of statistical shape and biomechanical 

models. The incorporation of these models into IGI will be an important research topic in 

future years. Full solutions to biomechanical models are challenging to achieve, and the 

real-time requirement places restrictions on the computations that can be performed. In 

this case, the use of biomechanical modelling, combined with intra-operative surface 

deformation, can be used to constrain the model and significantly reduce computational 

complexity. This research topic is pursued in [268] under the general framework of 

Image Constrained Biomechanical Modelling (ICBM). ICBM can be used to constrain 

the registration problem; however, non-rigid registration remains a challenging research 

area. The clinical uptake of non-rigid techniques is dependent on the development of new 

and rigorous validation methods [4].  

 

There is also a requirement for systems to go beyond simply adapting to the changing 

surgical environment of MIS. New methods capable of understanding and predicting 

dynamic tissue motion are required. Cardiac procedures are particularly important 

examples. The stability of the operating field is affected by the cardiac and respiratory 

cycles. Tissue motion caused by these cycles can be modelled and predicted using 

periodic and quasi-periodic models. These models can also be used to control robotic 

instruments and to achieve motion compensation where the instruments are synchronised 

with the physiological motion of the tissue. Theoretically, this cancels out the periodic 

motion of the organs, thus enabling the surgeon to operate on a visually static heart. In 

practice, however, mechanical motion compensation can only be performed relative to a 

single point on the surface of the tissue, and non-linear tissue deformation causes 

residual motion in the surrounding area. The localisation of the stabilisation point can be 

controlled intelligently with gaze contingent motor channelling. This approach can been 

intuitively incorporated into the surgical work-flow, thus enabling the stabilisation point 

to be dynamically altered based on the surgeon’s focus of attention. In addition, residual 

motion is observed in the peripheral vision reducing visible errors [269]. 

 

Surgical robotics has an important role to play in the future of IGI for MIS. Robotic 

control is fundamental to the implementation of dynamic active constraints. Dynamic 

active constraints use intra-operative deformation estimation to register no-go zones 

defined using pre-operative data and further refined during the intra-operative process. 

Robotic control is used to prevent the surgeon from manoeuvring the tools into these 
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zones and damaging critical structures. A fundamental component of active constraints is 

haptic feedback. The incorporation of haptic feedback into the robotic control interface is 

not trivial. The forces acting on surgical instrumentation are caused by interaction with 

tissue and other instruments, including the trocar. Sensing and decoupling these forces 

requires miniaturised, embedded sensors, which are biocompatible and easily sterilised. 

Current research has evaluated the influences of haptic perception [270] and 

demonstrated the benefits [135], however, further study is required for integrating 

haptics into robotic systems with clinical applications.  

 

Human-computer or human-robot interactions are important components for 

consideration when translating research to the operating theatre. Traditional interfaces, 

such as keyboards and mice, are inappropriate for the operating theatre as the surgeons 

must use their hands to perform surgery. This makes developing simple and intuitive 

interfaces for the surgical theatre challenging and is further complicated by the complex, 

surgical work-flow that varies greatly between surgeons. Brain-machine interfaces and 

gaze-contingent motor channelling offer elegant solutions to the interface problem. 

Unlike traditional techniques, they have the potential to provide more information, such 

as the attention and focus of the surgeon. Gaze-contingent motor channelling has been 

proposed for visual servoing [271] and for motion compensation [272] in surgery.  

  

A fundamental component of the interface is visualisation. Information for surgical 

guidance must be effectively displayed to the surgeon. AR provides an intuitive and 

promising mode of visualisation and data fusion for MIS. Head-mounted and auto-

stereoscopic displays are attractive visualisation methods, however, they are not yet 

sufficiently advanced to be integrated into the surgical theatre and require the 

introduction of additional equipment. Augmenting the endoscopic or laparoscopic 

images offers the simplest solution for MIS as it can be easily incorporated into the 

surgical work flow. The correct visualisation of depth in AR remains a challenging 

research area. Incorrect or conflicting depth cues can lead to misinterpretation, nausea, 

and fatigue. The accuracy of the visualisation must also be taken into account. The 

alignment of physical and virtual objects in AR, achieved using sensors regardless of 

type, will contain noise and inaccuracies. Measuring the error and displaying it to the 

surgeon is essential to enable the formation of informed decisions [39].  
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This thesis has presented methods for tissue tracking and laparoscope localisation based 

on laparoscopic images only. Estimating tissue deformation and laparoscope position are 

fundamental prerequisites for the advancement of image-guided navigation of 

gastrointestinal, cardiac, and abdominal surgeries. IGI has the potential to increase the 

current functional capabilities of MIS in these procedures, thus enabling new procedures, 

increasing safety, and reducing operation times.  
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