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Abstract. Augmented reality for soft tissue laparoscopic surgery is a
growing topic of interest in the medical community and has potential
application in intra-operative planning and image guidance. Delivery of
such systems to the operating room remains complex with theoretical
challenges related to tissue deformation and the practical limitations of
imaging equipment. Current research in this area generally only solves
part of the registration pipeline or relies on fiducials, manual model
alignment or assumes that tissue is static. This paper proposes a novel
augmented reality framework for intra-operative planning: the approach
co-registers pre-operative CT with stereo laparoscopic images using cone
beam CT and fluoroscopy as bridging modalities. It does not require fidu-
cials or manual alignment and compensates for tissue deformation from
insufflation and respiration while allowing the laparoscope to be navi-
gated. The paper’s theoretical and practical contributions are validated
using simulated, phantom, ex vivo, in vivo and non medical data.

1 Introduction

Interest in augmented reality (AR) for soft tissue surgery, such as liver resection
and partial nephrectomy, has grown steadily within the medical community. The
role of AR in this context is procedure- and workflow-dependent. It can be used
at the beginning of the surgical procedure for intra-operative planning to rapidly
identify target anatomy and critical sub surface vessels, or it can facilitate image
guidance to display tumor resection margins and improve dissection accuracy [1].

A number of theoretical and practical challenges remain for the translation
of such systems into the operating room. The core challenge is registration of
the pre-operative image (CT/MRI) with the intra-operative laparoscopic im-
age. This in itself is challenging due to the lack of cross modality landmarks
and the laparoscopic camera’s small viewing field. Furthermore, surgical proce-
dures require insufflation of the abdomen causing an initial organ shift and tissue
deformation, which must be reconciled. The registration problem is further com-
plicated during the procedure itself due to continuous tissue deformation caused
by respiration and tool-tissue interaction.



Due to the complex registration pipeline required to deliver AR to the op-
erating room, current research tends to focus on individual components of the
process and do not provide complete solutions. For example, notable work ex-
ists in deformable tissue modeling [2, 3], dense reconstruction [4, 3], non-rigid
registration of CT to cone beam CT (CBCT) [5], tissue tracking [6], surface
registration [7] and laparoscopic camera pose estimation [8, 9].

A handful of end-to-end systems have been proposed for the operating room
that rely on additional fiducials, manual registration, or the baseline assumption
that tissue is static. Challenges persist in each scenario. Fiducials act as cross
modality landmarks and have been attached externally on the patient’s skin [10]
and to the organ itself [11]. Their use however, can be disruptive to the clinical
workflow. Manual registration, on the other hand, requires experts to visually
align a 3D model to the laparoscopic image [12]. Accuracy is user dependent
even when alignment is constrained with a single cross modality landmark [13].
Finally, as per the static environment assumption, a comprehensive system has
been proposed for skull surgery [8], but deformation compromises its accuracy.

This paper proposes an AR framework for intra-operative planning in liver
surgery1. The novel system registers pre-operative CT and stereo laparoscopic
images to a common coordinate system using CBCT and fluoroscopy as bridg-
ing modalities. It does not require fiducials or manual model alignment. Tissue
deformation caused by insufflation, organ shift and respiration are accounted for
along with laparoscopic camera motion. The framework is evaluated on simu-
lated, phantom, ex vivo, in vivo and non medical data.

2 Method

A key component of the AR system is the introduction of CBCT into the operat-
ing room. CBCT machines capture 3D CT-like images and 2D fluoroscopy —in
the same coordinate system —while the patient is on the operating table. CBCT
and fluoroscopy are used as bridging modalities to co-register pre-operative CT
and laparoscopic images. The framework consists of three registration phases:
1) a registration of CT to CBCT (Fig. 1), which takes into account tissue defor-
mation resulting from insufflation 2) a registration of the laparoscope to CT via
CBCT coordinate system (Fig. 2), accounting for tissue deformation caused by
respiration and 3) a temporal registration of laparoscopic images (Fig. 3), which
deals with camera motion and tissue deformation caused by respiration.

2.1 Non Rigid Registration of CT to CBCT

Pre-operative CT and organ segmentation are performed in the days or weeks
prior to the operation. With the patient in the supine position, two CT images are
captured using a contrast injection at the arterial and venous phases. The images
are registered together and segmented2 into 3D anatomical models including the
liver, tumor, vessels and abdomen wall as shown in Fig. 1.

1 Not currently commercially available.
2 www.visiblepatient.com



Fig. 1: Registration of pre-operative CT to intra-operative CBCT.

During the procedure, the patient is positioned for easy of access (e.g. reverse
Trendelenburg) and the abdomen is insufflated with CO2 causing organ shift
and deformation. The tools and laparoscope are removed or positioned safely
and a CBCT is acquired during an inhale breath hold. Fig. 1, shows the signifi-
cant difference between the CT and CBCT images. The CT is registered to the
CBCT using a non-rigid biomechanically driven registration technique [5]. This
registration approach consists of three steps: 1) rigid alignment of the spine, 2)
biomechanical insufflation modeling, and 3) diffeomorphic non-rigid registration.
The final deformation field can be applied to the pre-operative planning data
and models, thus bringing this information into the CBCT coordinate system.

2.2 Registration of the Laparoscope to CBCT Coordinate System

With the CT to CBCT registration complete, the next task is registering the
laparoscope to the CBCT coordinate system. This is challenging due to the lack
of cross modality landmarks and the camera’s small field of view. A two step
registration is proposed- an initial position estimation and local refinement.

The initial position of the laparoscope in the CBCT coordinate system is
estimated using fluoroscopic images. A mechanical device holds the laparoscope
in position and two mono fluoroscopic images are acquired, each 90 ◦ apart.
A semi-automated method is used to select two points along the shaft which
are triangulated to estimate the laparoscope’s position and pose with 5 degrees
of freedom. The rotation around the laparoscope’s optical imaging axis is not
estimated due to its symmetrical appearance in the fluoroscopic images. Further-
more, the physical position of the camera center along the shaft is not known,
and this introduces additional errors.

A local registration refinement is performed directly between the laparoscopic
images and the 3D surface model of the organ in the CBCT coordinate system.
At this point in the surgical workflow the patient is not at breath hold. Their
breathing is periodic and controlled by a ventilator. This respiration causes the
abdominal tissue to deform periodically. The first challenge, therefore, lies in the
registration of the laparoscopic images to a 3D model representing the tissue at
an inhale breath hold. Registering to any other point in the respiration cycle
would introduce error into the system.

The temporal motion of the tissue in the laparoscopic images is used to es-
timate the current point in the respiration cycle. Features are detected on the
tissue surface and matched in the left and right stereo laparoscope images to es-
timate their 3D position relative to the camera. The 3D features are transformed



Fig. 2: Registration of laparoscope to CBCT coordinate system.

into CBCT space using the initial laparoscope alignment and features which are
not position near the liver are removed. The features are tracked from frame to
frame and their 3D position is computed. Principal Component Analysis (PCA)
is applied to extract a 1D respiration signal from the 3D motion of the features
[9]. The first component corresponds to respiration, this data is smoothed using
a moving average filter to obtain a 1D respiration signal for each feature.

The maximum inhalation position is estimated by fitting a respiration model

z(t) = z0 − bcos2n(
Πt

τ
− φ) (1)

where z0 is the position of the liver at the exhale, b is the amplitude, τ is the res-
piration frequency, φ is the phase and n describes the gradient of the model and
is empirically set to 4. The parameters of Eq. 1 are estimated using Levenberg-
Marquardt minimization algorithm. Before the model is fit, outliers are removed
by applying RANSAC to the orientation of the PCA transformation and thresh-
olding the periodicity of the respiration signal which corresponds to τ and φ.
The remaining inliers are averaged and the model parameters are estimated to
identify the point in the respiration cycle corresponding to maximum inhale.

Given the initial estimate of the laparoscope’s position and the point in
the respiration cycle, the final step remains to perform the direct registration
between stereo images and the 3D model. A 3D-3D registration aligns a stereo
reconstruction [4] to a point set extracted from the 3D model surface. This point
set is extracted using the initial estimate of the laparoscope’s position from the
previous step, the camera’s intrinsic parameters, and z-buffering.

The accurate registration of the 3D model point set and the stereo recon-
struction is challenging. At a macro level the point sets represent the same shape,
however at a local level they are structurally different because of the way the
point sets are generated. The 3D model is continuous, smooth and isotropic. The
stereo reconstruction is discretized, contains steps due to pixel level disparity es-
timates, is anisotropic and may not be a complete surface representation. As a
result, even after correct alignment it is impossible to get an exact match for
each point. This can cause point-to-point algorithms such as Iterative Closest
Point (ICP) to converge a sub-optimal solution as shown in [7].

A probabilistic approach is used [14] that models noise in both the target and
source point sets. It makes use of the underlying surface structure while remain-
ing computationally efficient by combines point-to-point and point-to-plane ICP
in a single framework. The goal is to align two point sets A = {ai}i=1,...,n and



Fig. 3: Temporal registration of laparoscope and tissue.

B = {bi}i=1,...,n′ . The proposed approach replaces the traditional ICP minimiza-
tion step T← argminT

∑
i{Tbi−mi‖2} which finds the optimal transformation

T between point bi and mi (the closest corresponding point in A) with

T = argmin
T

∑
i

{
d
(T)>

i (CB
i + TCA

i T>)
−1
dTi

}
(2)

where dTi = bi − Tai and CA
i and CB

i are the covariance matrices used to
model noise in the system. By setting high covariance along the local plane and
a low covariance along the surface normal, the registration algorithm is guided
to use the surface information in both the 3D model point set and the stereo
reconstruction point set. The stereo point set is a subset of the 3D model point
set. A maximum correspondence distance is empirically set to account for the
fact that some points do not have matches.

2.3 Temporal Alignment

Section 2.2 outlined an approach for registering the laparoscope to the CBCT
system where the laparoscope is static and the tissue is temporally static, i.e.
at maximum inhale. However, during abdominal surgery, tissue and organs are
continuously deforming and the surgeon is free to move the laparoscopic camera.

The position of the laparoscopic camera and tissue deformation are jointly
estimated using a modified Simultaneous Localization and Mapping (SLAM)
technique [9]. This approach models the position and orientation of the camera
in conjunction with a dynamic 3D tissue model which is driven by a respiration
model. Within an Extended Kalman Filter (EKF) framework the state vector x̂ is
comprised of the camera position rW , its orientation RRW , translational velocity
vW and angular velocity wR and the respiration model parameters estimated in
section 2.2 {z0, b, τ, φ}. In addition, for each feature, the state contains ŷi =
(ȳ, eig) where ȳ is the average 3D position of the feature and eig is the PCA
transformation. As shown in Fig. 3, the system iterates between prediction and
update steps to estimate the camera’s position and tissue deformation. Further
details can be found in [9].

The SLAM algorithm initalization follows the registration in section 2.2. As a
result, the 3D SLAM features are co-registered to the CBCT coordinate system.
In the subsequent image frames, computing the transformation, using singular
value decomposition, between the feature positions at time t and time 0 yeilds
the estimated 3D model position.



Fig. 4: Laparoscope to CBCT registration: Fiducials shown in green (ground
truth), blue (before registration), yellow (after registration). a) non medical, b)
sim, c) ex vivo, d) phantom. In vivo SRE (mm) e) before and f) after registration.

3 Experiments and Results

A range of experiments were performed to validate the proposed framework
on simulated, phantom, ex vivo, in vivo and non medical data. The phases of
the pipeline are evaluated separately here, both for clarity and because not all
data contain temporal deformation. CT to CBCT obtains accuracy of <1mm
on liver, due to space constraints the reader is directed to [5] for evaluation. A
description of the datasets follows. Simulated: a mesh generated form a CT and
textured with laparoscopic images. Phantom: a visually realistic silicon liver
phantom with surface fiducials for ground truth. Ex vivo: porcine with fiducials
for ground truth. In vivo: two porcine without fiducials. Non Medical: meshes
from Stanford dataset3 textured with laparoscopic images.

Registration of laparoscopic camera to CBCT. 50 datasets with ground
truth were available- simulated (20), phantom (10), ex vivo (10) and non medical
(10). Random noise (Up to ±20mm) was added to the initial position of the
laparoscope in the CBCT system to quantitatively evaluate the registration. 10
noisy datasets were created for each ground truth dataset, making a total of 500
datasets. 11 in vivo datasets were evaluated without ground truth fiducials. The
results are shown in Table 1 and illustrated in Fig. 4.

Table 1: Quantitative validation: Registration of laparoscope to CBCT.

SRE SRE TRE TRE
Dataset Before After Before After
Sim 5.3mm 0.8mm 10.4mm, 289.9 px 1.69mm, 56.8 px

Phantom 5.7mm 1.1mm 10.2mm, 90.5 px 4.1mm, 29.9 px
Ex vivo 4.7mm 1.3mm 10.28mm, 136.5 px 3.4mm, 48.7 px
In vivo 5.4mm 0.9mm N/A N/A

Non Medical 5.5mm 0.9mm 10.2mm, 321.2 px 0.3mm, 10.6 px

3 http://graphics.stanford.edu/data/3Dscanrep#bunny



Fig. 5: Augmented reality overlay of a virtual tumor for intra-operative planning.

The metrics Surface Registration Error (SRE) = 1
n

∑n
i=0{

√
(ai −mi)2} and

Target Registration Error (TRE) = RMSError(Fiducials1− Fiducials2) are
used for evaluation. The registration refinement process reduces the TRE for
all datasets converging to results of between 0.3-4.1mm. The phantom data has
the largest error which is attributed to its homogenous shape. Additional errors
may be introduced by manual fiducial annotation. The 2D TRE is dependent
on the proximity of the fiducials to the camera and image size. The in vivo
and ex vivo image size is 1280x720 and all others are 1920x1080. The 2D TRE is
visualized in Fig. 4. Fig. 4a) shows a successful registration where the added noise
is 10◦ around the optical axis and 10mm along the optical axis. The registration
reduces the SRE for all datasets. Fig. 4 e-f) show the SRE for in vivo data
before and after registration with Fig. 4 f) demonstrates a converged registration.
Stereo reconstruction takes 5.1s and registration takes 7.2s however, the proposed
surgical workflow does not requrie these step to be real-time.

Temporal registration was quantitatively evaluated on 20 simulated and
five in vivo datasets. Simulated data was generated by applying a realistic biome-
chanical deformation to the organ model and moving the camera. Evaluation
with respect to TRE and camera position are shown in Table 2. For in vivo data
ground truth was obtained by annotating the position of the scope in fluoro
images at the start and end of each sequence. The annotation contains absolute
positional errors in the CBCT coordinate system but it can be considered accu-
rate relative to the camera coordinate system. The results are shown in Table 2.
Qualitative validation is provided for in vivo data in Fig. 5 where a segmented
virtual tumor is augmented. This illustrates the accurate estimation of the cam-
era’s position and the point in the respiration cycle. The respiration models are
visualized in Fig 6. Temporal registration runs at 15fps.

Fig. 6: Respiration model. in vivo
(top), sim (bot). 1D respiration sig-
nal (b), smoothed data (r), model(g)

TRE Camera
Dataset Error 3D Position 3D

Sim 3.6mm 1.9 mm

In vivo n/a 4.1 mm

Table 2: Quantitative evaluation
of temporal registration of laparo-
scopic images.



4 Conclusion

In this paper, an augmented reality framework for intra-operative planning is
proposed which co-registering pre-operative CT to laparoscope images. It does
not require fiducials, manual model alignment and accounts for camera motion
and tissue deformation. The framework has been validated on simulated, phan-
tom, ex vivo (porcine), in vivo (porcine) and non medical data. Future work will
focus on improving computational efficiency and more complex tissue modelling.
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