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Abstract. The effectiveness and clinical benefits of image guided surgery are 

well established for procedures where there is manageable tissue motion. In 

minimally invasive cardiac, gastrointestinal, or abdominal surgery, large scale 

tissue deformation prohibits accurate registration and fusion of pre- and intra-

operative data. Vision based techniques such as structure from motion and 

simultaneous localization and mapping are capable of recovering 3D structure 

and laparoscope motion. Current research in the area generally assumes the 

environment is static, which is difficult to satisfy in most surgical procedures. 

In this paper, a novel framework for simultaneous online estimation of 

laparoscopic camera motion and tissue deformation in a dynamic environment 

is proposed. The method only relies on images captured by the laparoscope to 

sequentially and incrementally generate a dynamic 3D map of tissue motion 

that can be co-registered with pre-operative data. The theoretical contribution of 

this paper is validated with both simulated and ex vivo data. The practical 

application of the technique is further demonstrated on in vivo procedures. 

Keywords: Image Guided Surgery, Minimally Invasive Surgery, Tracking, 

Simultaneous Localization And Mapping (SLAM), Augmented Reality  

1   Introduction 

For Minimally Invasive Surgery (MIS), the use of pre- and intra-operative image 

guidance has well established benefits. However, its application to procedures with 

large tissue deformation, such as those encountered in cardiovascular, gastrointestinal 

and abdominal surgery, is still limited. In order to establish a common in vivo material 

frame of reference that follows tissue deformation, in situ 3D reconstruction is 

necessary. In this regard, the use of fiducial markers and optical tracking, as well as 

intra-operative imaging such as ultrasound, MR and x-ray fluoroscope have been 

explored extensively. However, the use of vision techniques based on images from 

laparoscopes/endoscopes during MIS has clear advantages. It does not require the 

introduction of additional equipment to what is already a very complex surgical setup. 

Furthermore, it defines a single co-ordinate system for intra-operative 3D 

reconstruction, imaging device localization and visualization, therefore removing the 

need for registration between multiple data streams to a global coordinate system.   

The vision based techniques used for MIS currently include Simultaneous 

Localization And Mapping (SLAM) [1, 2] and Structure from Motion [3, 4]. They 

have been applied to a variety of anatomical settings such as the abdomen [1, 2], 



colon [3], bladder [4] and sinus [5], with the assumption that the structure is relatively 

static. Structure from Motion has been formulated for used in non-rigid environments 

however, it requires offline batch processing, thus making it difficult for real-time 

applications. In [6], for example, it is used to estimate a static cardiac surface at a pre 

selected point in the cardiac cycle. The 3D structure of the deforming cardiac surface 

is estimated online in [7] by tracking regions of interest on the organ. It is important 

to note that in approaches such as this, it is assumed that the laparoscopic camera is 

fixed, which is not realistic for in vivo applications.   

The purpose of this paper is to present a novel online approach for simultaneous 

estimation of camera motion and deforming tissue structure. The system presented 

extends the current SLAM framework, not only to cope with camera motion, but also 

to learn a high level model for compensating periodic organ motion. The learnt 

motion model is explicitly incorporated into the statistical SLAM framework, 

enabling dynamic tissue motion to be estimated even when it is outside the camera’s 

current field-of-view. The basic steps of the proposed algorithm is schematically 

illustrated in Fig 1, those specific steps for dealing with dynamic tissue motion are 

highlighted in yellow. We term this Motion Compensated SLAM (MC-SLAM), 

which to our knowledge, is the first work for simultaneous online estimation of 

camera motion and dynamic structure. To assess the accuracy of the proposed 

framework, the proposed method is validated with synthetic and ex vivo data and its in 

vivo application is also demonstrated. 

 

2   Methods 

2.1  Motion Modeling 

To illustrate the practical use of the MC-SLAM framework, we will use MIS liver 

surgery as an example. It has been shown that the motion of the liver is correlated to 

the periodic motion of the diaphragm and therefore respiration [8]. In this work we 

exploit this correlation to create a high level model of respiration that can be used to 

predict the dynamic 3D position of tissue in the abdomen. The respiration model is 

estimated by measuring the 3D motion of points on the liver, as shown in Fig 1b), 

with a stereo laparoscope. The 3D position of points on the liver are estimated by 

matching regions of interest in the left and right stereo images and triangulating using 

the camera’s intrinsic and extrinsic parameters. The temporal motion of the 3D points 

is estimated by tracking the regions of interests along time using an approach outlined 

in [9]. This approach learns what information is unique about a region and how best 

to distinguish it from its surroundings, making it well suited to MIS data.  

In this work, the liver is assumed to move and deform freely in 3D. Fig. 2a) 

illustrates the 3D coordinates of a region on the liver surface. The data was collected 

from a static laparoscope during an in vivo porcine experiment. The signal is periodic 

in all three axes. The point is periodically moving along a path or principal axis in 3D 

space which corresponds to the superior-inferior axis [10] and can be approximated as 

locally linear as shown in Fig 1b). Each point on the liver has an individual principal 

axis of motion. However, its position on that axis is correlated to the respiration cycle.  

 
 



 
Fig. 1. (a) A schematic illustration of the main steps of the proposed MC-SLAM framework.  

Additional steps for dealing with dynamic tissue motion are highlighted in yellow. (b) An 

example illustration of respiratory modeling from organ motion, which involves: 1) the motion 

of a region or feature point (of a liver) is tracked temporally in 3D, 2) the principal axis of 

motion (a vector representing the dominant direction of organ motion) is estimated, 3) the 

periodic motion along this axis is examined and a respiration model is fitted to the data.  

 

By determining the principal axis of motion and observing the temporal motion 

characteristics, a model of respiration can be inferred. 

In order to relate the 3D coordinate space to the principal axis of motion, Principal 

Component Analysis (PCA) is used. The result of PCA for the data in Fig. 2a) is 

shown in Fig. 2b). The first component of PCA is shown in blue, which clearly 

represents respiration induced tissue motion. The second component contains a small 

variance caused by hysteresis. A typical respiratory cycle is asymmetrically periodic 

[10] with a longer dwell time at exhalation as shown in Fig. 2c). This can be 

represented as 

2
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where 0z is the position of the liver at the exhale, b  is the amplitude, τ  is the 

respiration frequency, φ  is the phase and n describes the shape or gradient of the 

model. Eq. 1 is used to model the data in the first component of PCA (shown in Fig. 

2b). The parameters of Eq. 1 are estimated using Levenberg-Marquardt minimization 

algorithm where the problem is posed as a least squares curve fitting. 

The respiration cycle can be estimated using any point on the liver, assuming it can 

be tracked throughout the respiratory cycle. The transformation from the global 

coordinate system to the respiration coordinate system is unique to each point. This 

means that points on the surface of the liver can move and deform in independent 

directions but share the same respiration model. Given a model of respiration, it is 

therefore possible to estimate the dynamic tissue motion using the inverse PCA 

transformation matrix and a given point in the respiration cycle. 

In MIS, respiration is normally regulated by a ventilator. The respiration cycle can 

therefore be considered periodic with small fluctuations in the frequency and 

amplitude caused by the ventilator. In the following section, we show how the 

periodic respiration and associated ventilator noise can be modeled in an Extended 

Kalman Filter (EKF) to prevent error propagation and synchronization issues.  



 
Fig. 2. (a) The 3D global coordinates of a region on the surface of the liver illustrating periodic 

organ motion. (b) Result of PCA as applied to (a), illustrating the respiration cycle extracted 

from organ motion in (a). The first 3 PCA components are shown and the first component 

corresponds to the principal axis of motion. (c) is a graphical representation of  the asymmetric 

respiration model described by Eq. 1. 

2.2   Motion Compensated SLAM (MC-SLAM) 

In SLAM [1, 2], it is generally assumed that the map is rigid. In MC-SLAM, a 

periodic motion model is introduced to compensate for the dynamic tissue 

deformation, thus enabling dynamic mapping and accurate localization of the camera. 

Conceptually, this introduces three novel steps into the SLAM framework shown in 

Fig. 1a). The first is to learn an initial estimate of the periodic respiration model using 

the method described in the previous section. The second and third steps are the 

prediction of the respiration motion model and prediction of the tissue motion within 

the map. In conjunction with these steps, we have introduced a new state vector, 

prediction model and measurement model. 

MC-SLAM’s probabilistic framework is an Extended Kalman Filter (EKF). The 

state vector x̂  is composed of three elements representing the camera v̂x , the 

periodic respiration model m̂  and the map 1̂ ˆ( )iy y� . The covariance matrixP is 

square where ˆ ˆvx m
P  is the covariance between state elements v̂x and m̂ .   
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The camera’s state vector 
v̂x  contains the position Wr , orientation RWR , 

translational velocity Wv  and angular velocity Rw  of the camera. The periodic 

respiration model 0ˆ ( , , , )Tm b zα τ= is represented by the parameters derived from Eq. 

1, such that  2
0( ) cos ( )nz t z b α= −  where  /tα π τ= , t  is the time step, 0z is the 

exhale position of the liver, b is the amplitude, τ  is the frequency and 3n =  in 

accordance with [10]. Phase φ is not included as the system is initialized at 0φ = . 



The thi  map feature ˆ ( , )iy y eig=  is derived from the PCA transformation. 

( , , )x y zy y y y=  is the mean position of the feature in 3D space during a respiration 

cycle and ( , , )x y zeig eig eig eig=  is the eigenvector describing the transformation from 

3D space to the periodic respiration model.  

The state prediction model predicts camera, respiration and map motion. The 

camera motion is predicted using a “constant velocity, constant angular velocity” 

model. The state prediction model includes the addition step to predict the point in the 

respiration cycle and subsequently the motion in the map. The prediction model m

vf  

and process noise covariance m

vQ for the periodic respiration m̂  are 
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where 
τΦ is noise in the frequency, 

bΦ is noise in the amplitude and 
0z
Φ is noise in the 

exhale position. The predicted position of the thi  map feature in the world coordinate 

system W

iy  is computed using the predicted respiration parameters and îy  such that 
2

0( cos ( ))W n

iy eig z b yα= − + . 

The measurement model transforms the state space into the measurement space. 

Features in the map are measured relative to the camera. A feature’s position in the 

camera coordinate system is estimated using ( )R RW W W

L ih R y r= − , where RWR  and 
Wr  are the predicted camera rotation and position in the world coordinate system. 
W

iy is the position of the feature in the world coordinate system as predicted by the 

respiration model. The measurement model is  
2

0( ( cos ( )) )R RW n W

Lh R eig z b y rα= − + −     (4) 
 

and the partial derivatives (used in the EKF) of the measurement model with respect 

to m̂ are 

1ˆ
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The features are tracked in the image using [9]. During system initialization the 

camera is assumed static for one respiration cycle. Once initialized, new features can 

easily be added to the system when the camera is moving.  

 
 

Table 1. Parameters for respiration modeling.  

 τ  (Frames) b  (cm) 0z  (cm) 

Simulated Estimated 32.38 3.09 0. 95 

Simulated Ground Truth 31.83 3 1 

Ex Vivo Estimated 52.47 0.85 0.33 

Ex Vivo Ground Truth 52 0.9 0.3 



4  Results 

The proposed MC-SLAM framework is validated on a simulated data set with known 

ground truth. It is also validated on an ex vivo tissue experiment with induced 

deformation and applied to in vivo footage. For quantitative validation with the 

simulated data, a virtual stereo laparoscope was navigated through a 3D virtual 

environment with periodic motion applied to a 3D mesh  using Eq. 1 and the 

parameter settings shown in Table 1. The mesh was textured with an image of the 

liver. 

Camera localization is evaluated in Figs. 3a-c) where MC-SLAM is compared to 

the ground truth and results from the static SLAM framework. The mean position 

error and standard deviation are 0.25cm and 0.19cm for MC-SLAM and 1.31cm and 

0.6cm for static SLAM respectively. As the map and camera position are 

simultaneously estimated, accurate camera estimation is essential. The position error 

in MC-SLAM is attributed to rapid changes in acceleration of the camera’s motion 

which are not well modeled. In this simulation, the dominant map motion is in the Z 

axis and it is evident that this map motion is absorbed into the static SLAM’s 

estimation of the camera’s position as there is a periodic error in the Z axis (Fig. 3c). 

Rotation is accurately recovered by both systems. To validate the method for 

modeling respiration, the estimated parameters are compared to the ground truth in 

Table 1. 

For the ex vivo experiment performed, the ground truth position of the laparoscope 

was obtained using the approach in [11]. An ex vivo porcine liver sample was used 

and tissue motion was induced with a custom mechanical device. The device 

consisted of a cam, stepper motor and a sliding tray. Asymmetric motion is induced 

using Eq. 1 where z , n  and b are defined by the cam profile and τ is defined by the 

stepper motor. Quantitative evaluation of laparoscope localization is shown in Fig 3d-

f). The recovered motion using MC-SLAM closely follows the ground truth. Static 

SLAM however, periodically oscillates away from the ground truth. The mean error 

and standard deviation are 0.11cm and 0.07cm for MC-SLAM and 0.56cm and 

0.25cm for static SLAM respectively. In addition, static SLAM is more prone to data 

association errors as shown in Fig. 3d-f) between frames 800-1000. The estimated and 

ground truth parameters of the respiration model are compared in Table 1 and Fig. 

4a). 

 

 
Fig. 3. Quantitative comparison of estimated laparoscope position in the world coordinate 

frame with MC-SLAM (green), static SLAM (red) and ground truth (black dashed). (a-c) 

simulated data XYZ axes. (d-f) ex vivo data XYZ axes.  



 
Fig. 4. Ex vivo experiment results, (a) the estimated respiration model; blue - observed data, 

green - respiration model, black dashed - ground truth. (b-e) Illustration of Image Guided 

Surgery with pre-operative data visualized [12]  intra-operatively. (a-b) show a static 

laparoscope and the tissue at (b) exhale and (c) inhale position. (d) combined laparoscope and 

tissue motion. (e) laparoscope motion results in the target moving outside the current field-of-

view. The dynamic target position is estimated relative to the current position of the 

laparoscope and visualized using view expansion [13]. 
 

Figs. 4b-e) show the intra-operative laparoscopic images of the ex vivo tissue 

augmented with a virtual tumor which is manually and rigidly registered to the MC-

SLAM map. The tumor is visualized using the Augmented Reality (AR) technique 

presented in [12]. Figs. 4b-c) are captured from a static laparoscope and illustrate the 

position of the tumor at full exhale and full inhale. Figs. 4d-e) demonstrate the system 

working in the presents laparoscopic and tissue motion. In Fig. 4e), the camera 

navigates away from the tumor and its position is visualized outside the current field-

of-view using dynamic view expansion [13]. This illustrates the capability of the 

system to predict the dynamic 3D position of tissue even when the tissue is not in the 

camera’s current field-of-view.  

For the in vivo experiment, the ground truth data was not available. The estimated 

respiration model is illustrated in Fig. 5a) and Figs. 5b-e) illustrate results with the use 

of AR visualization. A virtual tumor is manually and rigidly registered to the MC-

SLAM map. Figs. 5b-c) show intra-operative in vivo images captured from a static 

laparoscope. Figs. 5b) and 5c) show the tissue position at the full exhale and full 

inhale point in the respiration cycle. This illustrates tissue displacement resulting from 

respiration which was estimated at 1.08cm. The motion of the augmented tumor 

demonstrates the dynamic nature of the MC-SLAM map and progression beyond the 

rigid environment assumption. In Fig. 5d) and Fig. 5e), the laparoscope is navigated 

by the surgeon to explore the abdomen. Throughout the exploration the augmented 

data is displayed in a visually consistent manor in the presents of both laparoscope 

and tissue motion.     

 

 
Fig. 5. In vivo experiment results; (a) the estimated respiration model (green) and observed data 

(blue); (b-e) illustration of Image Guided Surgery on in vivo footage with virtual pre-operative 

data visualized [12] intra-operatively; (b-c) images from a static laparoscope with the tissue at 

(b) exhale and (c) inhale position; (d-e) show combined tissue and laparoscope motion during 

abdominal exploration.  



5  Conclusions 

In this paper, we have presented a novel MC-SLAM system for simultaneous 

laparoscopic localization and dynamic tissue mapping. The system explicitly 

incorporates a periodic model of respiration into the statistical framework. This 

enables the system to predict and anticipate changes in tissue structure and estimated 

organ motion even when it is not in the laparoscope’s current field-of-view. The 

method has been validated on simulated and ex vivo data and its clinical relevance has 

been demonstrated with in vivo data. Future work will focus on non-rigid registration 

of pre-operative data, faster initialization and more sophisticated motion models. 
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