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Abstract. Accurate estimation and tracking of dynamic tissue deformation is 
important to motion compensation, intra-operative surgical guidance and navi-
gation in minimally invasive surgery. Current approaches to tissue deformation 
tracking are generally based on machine vision techniques for natural scenes 
which are not well suited to MIS because tissue deformation cannot be easily 
modeled by using ad hoc representations. Such techniques do not deal well with 
inter-reflection changes and may be susceptible to instrument occlusion. The 
purpose of this paper is to present an online learning based feature tracking 
method suitable for in vivo applications. It makes no assumptions about the type 
of image transformations and visual characteristics, and is updated continuously 
as the tracking progresses. The performance of the algorithm is compared with 
existing tracking algorithms and validated on simulated, as well as in vivo car-
diovascular and abdominal MIS data. The strength of the algorithm in dealing 
with drift and occlusion is validated and the practical value of the method is 
demonstrated by decoupling cardiac and respiratory motion in robotic assisted 
surgery.  
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1   Introduction 

With the maturity of Minimally Invasive Surgery (MIS), the clinical uptake is steadily 
increasing because of its recognized benefits to patients and healthcare providers, 
particularly in terms of reduced patient trauma and hospital recovery times. The per-
formance of MIS, however, is complicated by a number of visuomotor and ergonomic 
challenges including misaligned visuomotor axes, the fulcrum effect during instru-
ment manipulation, limited field of view, and loss of 3D vision and tactile feedback. 
The introduction of robotic assisted MIS has provided surgeons with improved visu-
alization and enhanced dexterity. It also offers the possibility of integrating patient-
specific preoperative/intraoperative data to allow imaged guided surgical navigation 
and intervention. For these techniques to be successful, particularly for cardiovascular 
and gastrointestinal surgeries where large scale tissue deformation is common, an 
important prerequisite is the accurate estimation and tracking of dynamic tissue  
deformation. 
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Recent work has shown that it is possible to perform 3D tissue tracking by using 
both monocular and stereo depth cues [1-3]. Researchers have also relied on gaze 
vergence through binocular eye tracking to facilitate real-time 3D tissue deformation 
recovery [4]. Two major issues identified in current vision based techniques include 
tracked feature density and persistency. The former dictates the level of detail of the 
deforming surface that can be reconstructed, whereas the latter is affected by mutual 
and self-occlusion of the tissue and instrument during the surgical procedure. Feature 
persistency is also heavily influenced by changes in operating field-of-view and light-
ing conditions. Current research has made significant inroads into improving density 
of the tracked features by using multiple depth cues to cater for the complex tissue 
geometry in vivo. However, they generally do not explicitly model nonlinear tissue 
deformation and may be susceptible to drift and occlusion.  

The purpose of this paper is to present an online learning based feature tracking 
method suitable for in vivo applications.  Feature tracking is formalized as a classifi-
cation problem where we propose solutions to training the classifier with unlabeled 
data and adaptive updates during the tracking process. The approach makes no as-
sumptions about the type of image transformations or visual characteristics enabling it 
to deal with nonlinear tissue deformation. It is demonstrated in this paper that with the 
proposed technique for general MIS scenes, as little as just 0.5 seconds may be re-
quired to start building up a complete feature representation. The performance of the 
algorithm is compared with other conventional trackers, and validated on simulated as 
well as in vivo cardiovascular and abdominal MIS data. The strength of the algorithm 
in dealing with drift and occlusion as well as tissue deformation is demonstrated.   

2   Methods 

2.1   Learning Based Feature Tracking 

The effectiveness of a feature tracking algorithm is largely determined by how the 
appearance of the feature is represented. This consists of two elements, firstly which 
information to encode (e.g. color, edges, intensity, texture, gradient) and secondly 
how to represent the encoded information (e.g. the use of probability density histo-
gram, histogram of gradients, templates, points, contours, active appearance models). 
The choice of what information to encode and how to represent the encoded informa-
tion is context specific. For example, in [5] mean-shift is used to track deformable 
objects by making the assumption that color is the most salient information to encode. 
Approaches such as SIFT [6] represent scaled information as gradient oriented  
histograms. 

It should be noted that these methods make ad hoc assumptions about which in-
formation will be most discriminative and how to encode it. They work well if the 
underlying assumptions hold. In MIS, changes in lighting and specular highlights can 
significantly alter the 2D appearance of the tissue. These environmental factors are 
exacerbated by 3D nonlinear tissue deformation. This makes ad hoc modeling of 
tissue appearance for consistent tracking difficult. Alternatively, it is possible to learn 
which information is most discriminative and how best to encode it. This concept has 
been adopted in hand writing recognition [8], object detection [9] and corner detection 
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[10] by learning offline the most discriminative representation of the data. Offline 
learning requires prior knowledge of the data which is not available during tissue 
tracking. In this paper, an online learning scheme is developed to extract discrimina-
tive information adaptively as the tracking process progresses such that it can cater for 
tissue deformation and environment changes while remaining robust to drift and oc-
clusion. The main steps of the algorithm are outlined in Fig. 1 and detailed in the 
following sections. 

 

Fig. 1. A diagrammatic overview of the proposed learning based online tracking system 

The algorithm is comprised of five main steps; 1-2) feature tracking is initially per-
formed using a Lucas Kanade (LK) [7] algorithm and then with our online approach, 
3) building the online tracker and learn a representation for a feature, 4) adapted and 
updated the feature representation and 5) tracker evaluation. 

Building the Online Tracker 
The feature tracking problem can be formalized as a classification problem where the 
goal is to classify the feature in a new image as a true match and classify all other 
features as false matches. In order to train a classifier we require a set of training data 
with true and false labels. Such training data can be obtained synthetically if the ap-
pearance of the feature can be well modeled or through manual labeling for offline 
learning. Neither of these approaches is suitable for tracking tissue therefore the clas-
sifier will need to be trained from unlabeled data. 

To solve this problem, we propose to extract the training data online while the fea-
tures are tracked. In this paper, features are extracted using Difference Of Gaussian 
[6] and Shi and Tomasi [11] detectors and initially tracked using a LK tracker. The 
key to our proposed method is to learn what information will be most appropriate for 
tracking, therefore the training data will consist of a number of image patches ex-
tracted directly from the image. The LK tracker enables the generation of a labeled set 
of true matches for the classifier. The set of false matches are then taken from the 
local area around the tracked feature. The labeled data provides the information which 
enables a set of patches S  to be partitioned into two sets tS and fS  representing 
‘true’ and ‘false’ matches. An ID3 [12] decision tree is then used to iteratively parti-
tion S . For each patch in set S , a test compares two pixel values to identify if the 
first pixel is greater, similar or less in value than the second pixel. The entropy of 
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each subset is measured to identify the test that provides the maximum information 
and therefore the best partition, i.e.,  

2 2 2( ) log log logt t f fH S S S S S S S= − −  (1) 

Exhaustive search using Eq. (1) is computationally prohibitive, this is solved instead 
by computing the log likelihood ratios [13] between distributions of tS and fS  and 
applying a variance ratio to find the optimum solution. At each pixel location, we 
create histograms t x y( , )  and f x y( , )  and calculate the log likelihood  
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where δ is set to be 0.001 to avoid dividing by zero. The variance ratio of the log 
likelihood is used to quantify the distance of the two classes, i.e.,  
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given the discrete probability density function ia .  This provides a measure of intra- 

and inter-class variance, and is capable of handling multimodal distributions unlike 
linear discriminate analysis.  

 
Tracking Features in New Frames 
A search area is defined based on the position of the feature in the last frame and at 
each point p x y( , ) in the search region, the patch around that point is classified using 
the decision tree. This classification can be performed quickly as the tests are simple 
and the false matches can be readily identified with only a few tests. This classifica-
tion step results in a number of candidate points in the search region which represent 
the potential location of the feature. The feature is localized by examining the prob-
ability distribution 

1
( )j tj tP N S S

−=  at the tree node jN to determine if it is a cor-
rect match, where tjS  is the number of true matches classified by node j  and tS is 
the number of true matches classified by the entire tree. The best candidate point ,x yp  
in the search area is then selected using the node distribution and a Gaussian kernel 
centered on the last known position.  
 
Evaluating and Improving the Online Tracker Performance  
Building the decision tree can be computationally intensive if the data set is large. 
However, testing the performance of our classifier is relatively fast. This is exploited 
in the proposed algorithm to adaptively build classification trees that best fit the ob-
served data. The tree is built initially with a small set of data, this is then followed by 
evaluating its classification performance and further improving the classifier. The 
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online tracker’s performance is evaluated by measuring the classification accuracy on 
the current data set. The metric used here is the false negative rate of the classifier, for 
which a high value indicates the classification tree is not suited to the data and its 
inherent information needs to be further exploited. False negatives indicate mis-
matches by the tracker where the test and distribution ( )jP N  at node jN  are not 
ideal representations of the data. Instead of rebuilding the entire tree, we can simply 
reclassify all the patches at node jN adding the incorrectly classified patch. This has 
the effect of shifting the distribution to better represent all the observed data and may 
lead to new nodes being added to the tree. The final adaptive step in the update is to 
select the most discriminative color space for tracking. This follows the criterion set 
out in [13] where 49 color spaces are searched to identify the most discriminative. 
This uses the variance ration equations outlined in Eq. 3.  

2.2   Extracting Intrinsic Tissue Motion 

To demonstrate the practical application of this technique, the cardiac and respiratory 
motion of the tissue are extracted by performing Independent Component Analysis 
(ICA) of the tracked features. ICA is a statistical technique for separating signals into 
additive subcomponents assuming mutual statistical independence. ICA can be for-
mulated to consider the recovered 3D motion (computed using stereo geometry) of 
the surface of the tissue to be the latent variables ( , , )m x y z=  and the components of 
intrinsic motion as ( , )s h r= . It attempts to find the transformation W such 
thats Wm n= +  where n is zero mean Gaussian noise. The components of m can 
be written as the weighted sum of the independent components, i.e., 

k k
m a s= ∑ , 

where ka is a vector of mixing weights which make up the mixing matrix 

1( )nA a a= …  where 1W A−= . The source s  and the mixing matrix A are estimated 
adaptively with cost function T

ks w m=  to maximize nongaussianality. 

3   Experiments and Results 

To evaluate the performance of the proposed online learnt tracker, results from  simu-
lated, porcine and in vivo data are compared to those from four conventional tracking 
techniques (Lucas Kanade[7] with template update, SIFT[6], and two mean-shift 
algorithms [13]). 

3.1   Simulated Experiment with Known Ground Truth  

For synthetic data, an image from a MIS procedure was taken and textured onto a 3D 
mesh, which was then warped with a mixture of Gaussian model to simulate the car-
diac and respiratory induced tissue deformation. The mesh was projected onto a vir-
tual camera for subsequent feature tracking. To better represent the real-life data, 
Guassian noise was added to the images. Fig. 2 (b) illustrates the tracking result for 
the synthetic data. It is evident that the LK tracker performed relatively well at the 
beginning of the experiment, but the performance rapidly declines due to error propa-
gation resulting from tissue deformation. The detect/match approach of SIFT in this 
case also performed poorly. The number of points does not decline over time, it  
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Fig. 2. Relative tracking performance for a synthetic data for the different tracking algorithms 
considered. (a) The simulated data by warping an image taken from a MIS procedure with 
known ground truth deformation characteristics. (b) Relative performance values for the five 
different tracking techniques compared; green – our online learnt tracker, red – SIFT, dark 
blue – Lucas Kanade, black – mean-shift 1 and light blue – mean-shift 2. 

 

Fig. 3. Relative tracking performance for in vivo sequences. (a,c,e,g,i) Example frames taken 
from in vivo data available at [14], (b,d,f,h,j) the associated quantitative analysis results of the 
tracking algorithms. Five trackers are compared; green – our online learnt tracker, red – SIFT, 
dark blue – Lucas Kanade, black – mean-shift 1 and light blue – mean-shift 2.  

oscillates as the tissue deforms, making it less attractive for continuous in vivo track-
ing. The performance of the two mean-shift algorithm is similar. This is not surprising 
as mean-shift only works well on self contained blobs of distinct color, which is  
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difficult to hold for in vivo applications. Large movements can also result in the fea-
ture falling outside the trackers basin of attraction which further contributes to the 
relatively poor performance achieved. For the proposed tracker with online learning, 
the overall performance is maintained, and the derived sensitivity outperforms all of 
the alternative techniques compared.  

3.2   In Vivo Experiments 

The performance of the proposed learning based online tracker was quantitatively 
evaluated on five in vivo sequences. The ground truth for the tracked features was 
obtained manually at 50 frame intervals. Fig. 3 demonstrates the five sequences used 
and the corresponding tracking results as compared to the four conventional tracking 
algorithms. Figs. 3 (a-d) show two beating heart sequences where artifacts due to 
bleeding, specular reflections and instrument occlusion have introduced significant 
problems to the LK, SIFT and mean-shift trackers. Similar to the synthetic experi-
ment, the LK tracker exhibits drift and its performance degrades as the tracking proc-
ess progresses. The SIFT and mean-shift trackers perform worse in the sequence 
shown in Fig. 3 (a) than Fig. 3 (b) as deformation in this sequence is more pro-
nounced. The graphs in Fig. 3 (b) and (d) show more features can be tracked using the 
learning based method. 

The effect of introducing instrument occlusion into the surgical field-of-view is 
shown in Figs. 3 (e-j). In Figs. 3 (e,g,i), instrument occlusion was introduced to the 
surgical field-of-view. Deformation in these sequences is mainly from respiration. In 
Fig 3 (e), only a small number of features are occluded, whereas in Fig 3 (g) the num-
ber is increased. In Fig 3 (i), almost all features are occluded at some point. Tracking 
in the last sequence is made more difficult as a suction device is used to remove 
blood, thus significantly changing the appearance of features.     

 

Fig. 4. (a) A single feature tracked over time showing drift with LK tracking in blue and the 
robustness of our approach in green. (b) Illustrates the problem of occlusion by a tool. Green – 
our online learnt tracker, red – SIFT. SIFT tracking is not continuous. (c) The first and (d) 
second components recovered using ICA from online tracking for motion compensation. 
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It is evident that once the feature is lost in the LK and mean-shift trackers, it can no 
longer be recovered. Detect and match tracking approaches such as SIFT are naturally  
suited to dealing with occlusion, but are not well suited to continuous tracking of 
deforming tissue. In contrast, the proposed learning based online tracker holds well 
for the experiment performed. 

Figs. 4 (a) and (b) illustrate the problems of drift and occlusion in 3D spatio-
temporal plots for the different techniques considered in this study. It demonstrates 
how feature representation with online learning can successfully overcome these 
problems. In this example, the online tracker was used to track deformation of the 
epicardial surface and the resulting ICA motion extraction shown in Fig 4 (c) and (d) 
clearly depicts cardiac and respiratory induced deformation.  

4   Conclusion 

In this paper, we have proposed a novel approach for feature tracking with online 
learning. The approach has been validated on simulated, porcine and in vivo data and 
compared to four conventional tracking techniques. We have demonstrated that the 
technique is robust to drift and capable of recovering from occlusion. The proposed 
technique is well suited to dealing with deforming tissue and unknown image trans-
formations. Robust feature tracking is important for a range of applications in robotic 
assisted MIS including real-time depth recovery, pre- and intra-operative image regis-
tration, as well as prescribing dynamic active constraints.  
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