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Abstract. The use of vision based algorithms in minimally invasive surgery has 
attracted significant attention in recent years due to its potential in providing in 
situ 3D tissue deformation recovery for intra-operative surgical guidance and 
robotic navigation. Thus far, a large number of feature descriptors have been 
proposed in computer vision but direct application of these techniques to 
minimally invasive surgery has shown significant problems due to free-form 
tissue deformation and varying visual appearances of surgical scenes. This 
paper evaluates the current state-of-the-art feature descriptors in computer 
vision and outlines their respective performance issues when used for 
deformation tracking. A novel probabilistic framework for selecting the most 
discriminative descriptors is presented and a Bayesian fusion method is used to 
boost the accuracy and temporal persistency of soft-tissue deformation tracking. 
The performance of the proposed method is evaluated with both simulated data 
with known ground truth, as well as in vivo video sequences recorded from 
robotic assisted MIS procedures. 
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1   Introduction 

Minimally Invasive Surgery (MIS) represents one of the major advances in modern 
healthcare. This approach has a number of well known advantages for the patients 
including shorter hospitalization, reduced post-surgical trauma and morbidity. 
However, MIS procedures also have a number of limitations such as reduced 
instrument control, difficult hand-eye coordination and poor operating field 
localization. These impose significant demand on the surgeon and require extensive 
skills in manual dexterity and 3D visuomotor control. With the recent introduction of 
MIS surgical robots, dexterity is enhanced by microprocessor controlled mechanical 
wrists, allowing motion scaling for reducing gross hand movements and the 
performance of micro-scale tasks that are otherwise not possible. In order to perform 
MIS with improved precision and repeatability, intra-operative surgical guidance is 
essential for complex surgical tasks. In prostatectomy, for example, 3D visualization 
of the surrounding anatomy can result in improved neurovascular bundle preservation 
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and enhanced continence and potency rates. The effectiveness and clinical benefit of 
intra-operative guidance have been well recognized in neuro and orthopedic surgeries. 
Its application to cardiothoracic or gastrointestinal surgery, however, remains 
problematic as the complexity of tissue deformation imposes a significant challenge. 
The major difficulty involved is in the accurate reconstruction of dynamic 
deformation of the soft-tissue in vivo so that patient-specific preoperative/intra-
operative data can be registered to the changing surgical field-of-views. This is also 
the prerequisite of providing augmented reality or advanced robotic control with 
dynamic active constraints and motion stabilization.  

Existing imaging modalities, such as intra-operative ultrasound, potentially offer 
detailed morphological information of the soft-tissue. However, there are recognised 
difficulties in integrating these imaging techniques for complex MIS procedures. 
Recent research has shown that it is more practical to rely on optical based techniques 
by using the existing laparoscopic camera to avoid further complication of the current 
MIS setup. It has been demonstrated that by introducing fiducial markers onto the 
exposed tissue surface, it is possible to obtain dynamic characteristics of the tissue in 
real-time [1]. Less invasive methods using optical flow and image derived features 
have also been attempted to infer tissue deformation [2]. These methods, however, 
impose strong geometrical constraints on the underlying tissue surface. They are 
generally not able to cater for large tissue deformation as experienced in 
cardiothoracic and gastrointestinal procedures. Existing research has shown that the 
major difficulty of using vision based techniques for inferring tissue deformation is in 
the accurate identification and tracking of surface features. They need to be robust to 
tissue deformation, specular highlights, and inter-reflecting lighting conditions.   

In computer vision, the issue of reliable feature tracking is a well researched topic 
for disparity analysis and depth reconstruction. Existing techniques, however, are 
mainly tailored for rigid man-made environments. Thus far, a large number of feature 
descriptors have been proposed and many of them are only invariant to perspective 
transformation due to camera motion [3]. Direct application of these techniques to 
MIS has shown significant problems due to free-form tissue deformation and 
contrastingly different visual appearances of changing surgical scenes. The purpose of 
this paper is to evaluate existing feature descriptors in computer vision and outline 
their respective performance issues when applied to MIS deformation tracking. A 
novel probabilistic framework for selecting the most discriminative descriptors is 
presented and a Bayesian fusion method is used to boost the accuracy and temporal 
persistency of soft-tissue deformation tracking. The performance of the proposed 
method is evaluated with both simulated data with known ground truth, as well as in 
vivo video sequences recorded from robotic assisted MIS procedures.  

2   Methods 

2.1   Feature Descriptors and Matching 

In computer vision, feature descriptors are successfully used in many applications in 
rigid man-made environments for robotic navigation, object recognition, video data 
mining and tracking. For tissue deformation tracking, however, the effectiveness of 
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existing techniques has not been studied in detail. To determine their respective 
quality for MIS, we evaluated a total of 21 descriptors, including seven different 
descriptors extended to work with color invariant space using techniques outlined in 
[4]. Color invariant descriptors are identified by a ‘C’ prefix. Subsequently, a machine 
learning method for inferring the most informative descriptors is proposed for 
Bayesian fusion. Table 1 provides a summary of all the descriptors used in this study. 
For clarity of terminology, we define a feature as a visual cue in an image. A detector 
is a low level feature extractor applied to all image pixels (such as edges and corners), 
whereas a descriptor provides a high level signature that describes the visual 
characteristics around a detected feature.  

Table 1. A summary of the feature descriptors evaluated in this study 

 ID     Descriptor 

SIFT, CSIFT[4] Scale Invariant Feature Transform, robust to scale and rotation changes. 

GLOH, CGLOH Gradient Location Orientation Histogram, SIFT with log polar location grid. 

SURF[5], CSURF Speeded Up Robust Features, robust to scale and rotation changes. 

Spin, CSpin Spin images, a 2D histogram of pixel intensity measured by the distance from 
the centre of the feature. 

MOM, CMOM Moment invariants computed up to the 2nd order and 2nd degree. 

CC, CCC Cross correlation, a 9×9 uniform sample template of the smoothed feature.   

SF, CSF Steerable Filters, Gaussian derivatives are computed up to the 4th order. 

DI, CDI Differential Invariants, Gaussian derivatives are computed up to the 4th order. 

GIH[6] Geodesic-Intensity Histogram, A 2D surface embedded in 3D space is used to 
create a descriptor which is robust to deformation.   

CCCI [7] Color Constant Color Indexing, A color based descriptor invariant to 
illumination which uses histogram of color angle.   

BR-CCCI Sensitivity of CCCI to blur is reduced using the approach in[8]. 

CBOR [9] Color Based Object Recognition, a similar approach to CCCI using  
alternative color angle 

BR-CBOR Sensitivity of CBOR to blur is reduced using the approach in[8]. 
 

For tissue deformation tracking and surface reconstruction, it is important to 
identify which features detected in an image sequence represent material 
correspondence. This process is known as matching and depending on the feature 
descriptor used, matching can be performed in different ways, e.g., using normalized 
cross-correlation over image regions or by measuring the Euclidean or Mahalanobis 
distance between descriptors. 

2.2   Descriptor Selection and Descriptor Fusion 

With the availability of a set of possible descriptors, it is important to establish their 
respective discriminative power in representing salient visual features that are suitable 
for subsequent feature tracking. To this end, a BFFS algorithm is used. It is a machine 
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learning approach formulated as a filter algorithm for reducing the complexity of 
multiple descriptors while maintaining the overall inferencing accuracy. The 
advantage of this method is that the selection of descriptors is purely based on the 
data distribution, and thus is unbiased towards a specific model. The criteria for 
descriptor selection are based on the expected Area Under the Receiver Operating 
Characteristic (ROC) Curve (AUC), and therefore the selected descriptor yield the 
best classification performance in terms of the ROC curve or sensitivity and 
specificity for an ideal classifier. Under this framework, the expected AUC is 
interpreted as a metric which describes the intrinsic discriminability of the descriptors 
in classification.  The basic principle of the algorithm is described in [13]. 

There are three major challenges related to the selection of the optimal set of 
descriptors: 1) the presence of irrelevant descriptors, 2) the presence of correlated or 
redundant descriptors and 3) the presence of descriptor interaction. Thus far, BFFS 
has been implemented using both forward and backward search strategies and it has 
been observed that the backward elimination suffers less from interaction [10,11,13]. 
In each step of the backward selection approach, a descriptor id  which minimizes the 
objective function ( )D di  will be eliminated from the descriptor set ( )kG , resulting in a 
new set { }( )k

id−G . To maximize the performance of the model, the standard BFFS 
prefers the descriptor set that maximizes the expected AUC. This is equivalent to 
discarding, at each step, the descriptor that contributes to the smallest change in the 
expected AUC. 

( ) ( ) { }( )( ) ( )k k
AUC AUCD d E E d= − −i iG G  (1) 

where { }( ) ,  1 1k

j j n kd= ≤ ≤ − +G
()

 denotes the descriptor set at the beginning of the 
iteration k, and ()AUCE  is a function which returns the expected AUC given by its 
parameter. Since the discriminability of the descriptor set before elimination 

( )( )k
AUCE G  is constant regardless of di , omitting the term in general does not affect 

the ranking of the features.  
While irrelevant descriptors are uninformative, redundant descriptors are often 

useful despite the fact that their presence may not necessarily increase the expected 
AUC. With the evaluation function described in Eq. (1), irrelevant and redundant 
descriptors are treated in the same manner since both contribute little to the overall 
model performance. In order to discard irrelevant descriptors before removing 
redundant descriptors, the following objective function has been proposed: 

( ) ( ) { }( ) ( )( )
1 1D 1 k

r i AUC AUCd E d E dω ω= − − × − + ×i iG
 (2) 

where 1ω  is the weighting factor ranging between 0 and 1. This function attempts to 
to maximise the discriminability of the selected descriptor set while minimizing the 
discriminability of the eliminated descriptors.  

Once the relevant descriptors are derived by using BFFS, a Naïve Bayesian 
Network (NBN) is used in this study to provide a probabilistic fusing of the selected 
descriptors. The result can subsequently be used for feature matching, where two 
features are classified as either matching or not matching by fusing the similarity 
measurements between descriptors to estimate the posterior probabilities. The NBN 
was trained on a subset of data with ground truth. 
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3   Experiments and Results 

To evaluate the proposed framework for feature descriptor selection, two MIS image 
sequences with large tissue deformation were used. The first shown in Fig. 1a-e is a 
simulated dataset with known ground truth, where tissue deformation is modeled by 
sequentially warping a textured 3D mesh using a Gaussian mixture model. The 
second sequence shown in Fig. 2a-d is an in vivo sequence from a laparoscopic 
cholecystectomy procedure, where the ground truth data is defined manually. Both 
sequences involve significant tissue deformation due to instrument-tissue interaction 
near the cystic duct. Low level features for these images were detected using the 
Difference of Gaussian (DoG) and the Maximally Stable Extremal Regions (MSER) 
detectors. 

Descriptor performance is quantitatively evaluated with respect to deformation 
using two metrics, sensitivity - the ratio of correctly matched features to the total 
number of corresponding features between two images and 1-specificity - the ratio of 
incorrectly matched features to the total number of non corresponding features. 
Results are presented in the form of ROC curves in Fig. 1 and Fig. 2. A good 
descriptor should be able to correctly identify matching features whilst having a 
minimum number of mismatches. Individual descriptors use a manually defined 
threshold on the Euclidean distance between descriptors to determine matching 
features. This threshold is varied to obtain the curves on the graphs. Our fusion 
approach has no manually defined threshold and is shown as a point on the graph.  

Ground truth data is acquired for quantitative analysis. On the simulated data, 
feature detection was performed on the first frame to provide an initial set of feature 
positions. These positions were identified on the 3D mesh enabling ground truth to be 
generated for subsequent images by projecting the deformed mesh positions back into 
the image plane. To acquire ground truth for in vivo data, feature detection was 
performed on each frame and corresponding features were matched manually. 

The AUC graph shown in Fig. 1 illustrates that by effective fusion of descriptor 
responses, the overall descriminability of the system is improved, which allows better 
matching of feature landmarks under large tissue deformation. The derived AUC 
curve (bottom left) indicates the ID of the top performing descriptors in a descending 
order. It is evident that after CGLOH, the addition of further feature descriptors does 
not provide additional performance enhancement to the combined feature descriptors. 
The ROC graph (bottom right) shows the performance of the fused descriptor when 
the top n descriptors are used (represented as nF ). Ideal descriptors will have high 
sensitivity and low 1-specificity. It is evident from these graphs that descriptor fusion 
can obtain a higher level of sensitivity than that of individual descriptors for an 
acceptable specificity. This enables the fusion technique to match more features and 
remain robust. The best performing descriptor is Spin and its sensitivity is 11.96% less 
than the fusion method for the specificity achieved with fusion. To obtain the same 
level of sensitivity using only the Spin descriptor specificity has to be compromised 
resulting in a 19.16% increase and a drop in robustness of feature matching. 
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Fig. 1. (a-e) Example images showing the simulated data for evaluating the performance of 
different feature descriptors. The two graphs represent the AUC and the ROC (sensitivity vs. 1-
specificity) curves of the descriptors used. For clarity, only the six best performing descriptors 
are shown for the ROC graph. 

 

Fig. 2. (a-d) Images form an in vivo laparoscopic cholecystectomy procedure showing 
instrument tissue interaction. The two graphs illustrate the AUC and the ROC (sensitivity vs. 1-
specificity) curves of the descriptors used. As in Fig. 1, only the six best performing descriptors 
are shown for the ROC graph for clarity.  

For in vivo validation, a total of 40 matched ground truth features were used. 
Detailed analysis results are shown in Fig. 2. It is evident that by descriptor fusion, 
the discriminative power of feature description is enhanced. The fused method obtains 
a specificity of 0.235 which gives a 30.63% improvement in sensitivity over the best 
performing descriptor GIH at the given specificity. This demonstrates the fused 
descriptor is capable of matching considerably more features than any individual 
descriptor for deforming tissue. Detailed performance analysis has shown that for 
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MIS images, the best performing individual descriptors are Spin, SIFT, SURF, DIH 
and GLOH. Computing the descriptors in color invariant space has no apparent effect 
on discriminability but the process is more computationally intensive. By using the 
proposed Bayesian fusion method, however, we are able to reliably match 
significantly more features than by using individual descriptors.  

 

 

Fig. 3. 3D deformation tracking and depth reconstruction based on computational stereo by 
using the proposed descriptor fusion and SIFT methods for a robotic assisted lung lobectomy 
procedure. SIFT was identified by the BFFS as the most discriminative descriptor for this 
image sequence.  Improved feature persistence is achieved by using the proposed fusion 
method, leading to improved 3D deformation recovery. 

To further illustrate the practical value of the proposed framework, the fused 
descriptor was applied to 3D stereo deformation recovery for an in vivo stereoscopic 
sequence from a lung lobectomy procedure performed by using a daVinci® robot. 
The representative 3D reconstruction results by using the proposed matching scheme 
are shown in Fig. 3. Visual features as detected in the first video frame were matched 
across the entire image sequence for temporal deformation recovery. Features that 
were successfully tracked both in time and space were used for 3D depth 
reconstruction. The overlay of dense and sparse reconstructions with the proposed 
method indicates the persistence of features by using the descriptor fusion scheme. 
The robustness of the derived features in persistently matching through time is an 
important prerequisite of all vision-based 3D tissue deformation techniques. The 
results obtained in this study indicate the practical value of the proposed method in 
underpinning the development of accurate in vivo 3D deformation reconstruction 
techniques. 

Tissue 
deformation 

Tissue 
deformation 

Fusion 

SIFT 
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4   Discussion and Conclusions 

In conclusion, we have presented a method for systematic descriptor selection for 
MIS feature tracking and deformation recovery. Experimental results have shown that 
the proposed framework performed favorably as compared to the existing techniques 
and the method is capable of matching a greater number of features in the presence of 
large tissue deformation. To our knowledge, this paper represents the first 
comprehensive study of feature descriptors in MIS images. It represents an important 
step towards more effective use of visual cues in developing vision based deformation 
recovery techniques. This work has also highlighted the importance of adaptively 
selecting viable image characteristics that can cater for surgical scene variations. 
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