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Abstract. Minimally Invasive Surgery (MIS) has recognized benefits of reduced 
patient trauma and recovery time. In practice, MIS procedures present a number 
of challenges due to the loss of 3D vision and the narrow field-of-view provided 
by the camera. The restricted vision can make navigation and localization within 
the human body a challenging task. This paper presents a robust technique for 
building a repeatable long term 3D map of the scene whilst recovering the camera 
movement based on Simultaneous Localization and Mapping (SLAM). A 
sequential vision only approach is adopted which provides 6 DOF camera 
movement that exploits the available textured surfaces and reduces reliance on 
strong planar structures required for range finders. The method has been validated 
with a simulated data set using real MIS textures, as well as in vivo MIS video 
sequences. The results indicate the strength of the proposed algorithm under the 
complex reflectance properties of the scene, and the potential for real-time 
application for integrating with the existing MIS hardware.  

1   Introduction 

In surgery, the increasing use of MIS is motivated by the benefit of improved 
therapeutic outcome combined with reduced patient trauma and hospitalization. The 
technique is increasingly being used to perform procedures that are otherwise 
prohibited by the confines of the operating environment. MIS also offers a unique 
opportunity for deploying sophisticated surgical tools that can greatly enhance the 
manual dexterities of the operating surgeon. Despite the benefit of MIS in terms of 
patient recovery and surgical outcome, the practical deployment of the technique is 
complicated by the complexity of instrument control and difficult hand-eye 
coordination. Due to the large magnification factors required for performing MIS 
tasks, the field-of-view of the laparoscope cameras is usually very limited. This 
results in restricted vision which can affect the visual-spatial orientation of the 
surgeon and the awareness of the peripheral sites. 

In order to facilitate the global orientation of the target site, a number of spatial 
localization techniques have been developed. These include the use of pre-operative 
imaging combined with 2D/3D registration such that the underlying structure and 
morphology of the soft-tissue can be provided. To cater for tissue deformation, 



348 P. Mountney et al. 

structure from light [1] or motion sensors such as mechanically or optically based 
accelerometers [2, 3] are used. With the increasing availabilities of stereo-laparoscope 
cameras, detailed 3D motion and structure recovery techniques based on stereo vision 
have also be proposed recently [4, 5]. The major advantage of the optical methods is 
that they do not require additional modifications to the existing MIS hardware, and 
thus are easily generalizable to different clinical settings. One of the limitations of the 
above techniques is that they only consider information captured in the current field-
of-view. Global information that is implicitly captured by the moving laparoscope 
camera is typically discarded. An exception to this is [6], where a map is built 
containing global information. The camera estimation is based on structure from 
motion, which is susceptible to drift. 

The purpose of this study is to investigate the use of SLAM for simultaneous 
stereoscope localization and soft tissue mapping. In essence, the SLAM problem is 
concerned with the estimation of moving sensor while building a reconstruction of 
what it observes. The advantage of the method is that it builds a long-term map of the 
features with minimal drift, allowing localization of the sensor after long periods of 
feature neglect [7, 8].  This is particularly useful for laparoscope with restricted vision 
in that a global map of the operating field-of-view can be integrated with moving 
stereo vision. In this study, a sequential vision only approach is adopted which 
provides 6 DOF camera movement that exploits the available textured surfaces and 
reduced reliance on strong planar structures required for range finders. More 
importantly, it provides the potential for real-time application for integrating with the 
existing MIS hardware. 

2   Methods 

2.1   Building a Statistical Map 

For stereoscope localization and soft tissue mapping, our aim is to recover the 
trajectory of the stereoscope and build a map of the environment.  In a Kalman filter 
framework, the overall state of the system x  is represented as a vector.  This vector is 
partitioned into the state v̂x  of the camera and the states îy of the features which 
make up the map. Crucially, the state vector is accompanied by a single covariance 
matrix which can also be partitioned as follows:  
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The role of the covariance matrix is to represent the uncertainty to first order in all the 
quantities in the state vector. Feature estimates îy  can be freely added to or deleted 
from the map as required  causing x  and P  to grow or shrink dynamically. In this 
framework, x  andP are updated in two steps: 1) the prediction step uses a motion 
model to calculate how the camera moves during surgery and how its position 
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uncertainty increases; 2) the measurement step describes how the map and camera 
position uncertainties can be reduced when new input from the stereoscope is 
processed.  Maintaining a full feature covariance matrixP allows the camera to re-
visit and recognize known areas after periods of neglect (this has been irrefutably 
proven in SLAM research).  

With the proposed approach, camera calibration is required to estimate 3D 
positions from stereo images and feature locations in the image plane from 3D 
positions.  Calibration is done assuming a pinhole camera model and using a closed 
form solution [9]. The centre of the camera rig is taken to be the left camera and the 
extrinsic parameters describe the translation and rotation of the right camera relative 
to the left camera. In MIS, the stereoscopic laparoscope is pre-calibrated before the 
surgical procedure and remains unchanged.   

 

Fig. 1. Stereo-laparoscope camera geometry and an example image from a MIS scene. The 
figure illustrates the geometry between a global coordinate system, the local camera 
coordinates and a selected point from the map. 

For the stereo-laparoscope camera, three coordinate frames illustrated in Fig. 1 are 
defined; W , fixed in the world, L , fixed with respect to the left camera and R , fixed 
with respect to the right camera.  
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We refer to vx as the state of the camera rig.  The state is made up of four parts; Wr a 
the position of the camera in the world coordinate system, WLq  the rotation of the 
camera in the world coordinate system,  wv  is the linear velocity and wω the angular 
velocity. iy  refers to a feature consisting a 3D vector in XYZ Euclidean space. 
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2.2   Motion Model 

In the case of a stereoscope moving during a MIS procedure, the motion model must 
take into account the unknown intentions of the operator.  This unknown element can 
be modeled statistically by using a two part motion model. The first part is a 
deterministic element known as a “constant velocity, constant angular velocity 
model”. This, however, does not mean that we assume that the camera moves at a 
constant velocity over all time. It only imposes that on average we expect its velocity 
and angular velocity to remain the same. The second part is stochastic and models the 
uncertainty in the surgeon's movement of the stereoscope. The uncertainty in the 
system is the acceleration modeled with a Gaussian profile. The implication of this 
model is that smoothness is implicitly imposed on the camera motion, very large 
accelerations are therefore relatively unlikely.  

The rate of growth of uncertainty in this motion model is determined by the size of 
parameter nP , and setting this to small or large values defines the smoothness of the 

motion we expect. With small nP , we expect a very smooth motion with small 

accelerations, and would be well placed to track motions of this type but unable to 
cope with sudden rapid movements or changes in direction. High nP   means that the 

uncertainty in the system increases significantly at each time step, and while this 
gives the ability to cope with rapid accelerations the very large uncertainty means that 
a lot of good measurements must be made at each time step to constrain the estimates. 

 

 
Fig. 2. (a) Visualization of the model for ‘smooth’ motion: at each camera position a most 
likely path is predicted together with alternatives with small deviations. (b) A MIS scene where 
25×25 pixel box represent feature patches detected using the Shi and Thomasi operator [10] 
and ellipses represent the estimated search regions for the landmarks. 

2.3   Visual Feature 

The in vivo anatomical structure is generally curved, thus making feature extraction 
more challenging than in man made environments.  In [5], MSER features and weak 
gradient features were combined to create a dense 3D map of the heart.  Features are 
tracked from frame to frame using a Lucas-Kanade tracker to recover the motion of 
the heart.  These transient features work well for frame to frame tracking. However, in 
order to build a sustainable map, we require long term landmarks which are 
repeatable. A long term repeatable feature is one that is strongly salient and uniquely 

(a) (b) 
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identifiable. Previous work by Davison [6] has demonstrated long term features 
within a structured environment with a good degree of view point independence. This 
approach is used in this study to detect features using the saliency operator of Shi and 
Tomasi [9]. The feature is represented by a 25×25 pixel patch, and a normalized sum-
of-squared difference correlation is used to match the feature in subsequent images.  
Specularities are removed through thresholding. 

In the proposed framework, we aim to keep the number of visible features at a 
predetermined threshold to reduce reliance on weak features.  A feature is “visible” if 
it is predicted to be in the current image. Features are added to the map if the number 
visible is less than this threshold.  New features are detected in the left image and 
matched using normalized sum-of-squared difference in the right stereo image.  
Initialization is managed to prevent the same feature being tracked twice. Epipolar 
geometry is used to estimate the 3D position of the feature and all features are 
initialized with uniform uncertainty represented as a 3D Gaussian. 

2.5   Measurement Model 

Another important element of the proposed localization model is the measurement. 
The measurement model is the process for comparing the predicted SLAM map with 
the input from the stereoscope.  The estimates px  of camera position and iy  of 
feature position in 3D, allowing the position of the features to be predicted in the 
image plane.  The position of a 3D feature relative to the camera is expected to be: 

( )L LW W W
L i Lh R y r= −  (3) 

where LWR  is the rotation matrix transforming between the left camera frame L and 
world frame W .  This is used to calculate ( , )L Lu v  the predicted positions of the 
features in the left stereo image.  The actual positions of the features in the images are 
obtained by actively searching the area around the predicted position. The search area 
is derived from the uncertainty of the feature’s predicted position which is a 2D 
Gaussian p.d.f. over the image coordinates. Gating at three standard deviations 
provides an elliptic search window around the feature’s predicted position.   

3   Experimental Design 

To validate the proposed method, a simulation with a virtual stereo camera moving 
through a texture mapped 3D world was rendered. The simulator as shown in Fig. 3 
provides the ground truth data of known camera movement within a known 
environment.  This allows the accuracy of the camera localization and mapping to be 
evaluated. 

The camera motion was controlled so that the resultant inter-frame pixel motion 
did not exceed 20 pixels, which was consistent with observations from in vivo data. 
The virtual stereo camera rig was set up to replicate a stereo-laparoscope by taking 
similar camera intrinsic and extrinsic properties, notably the baseline was set to only 
5mm.  The environment contains a plane, which has been textured with an image 
taken from a robotic assisted totally endoscopic coronary artery bypass graft surgery 
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 (a)          (b) 

Fig. 3. An illustration of the simulation environment used to generate a stereo-laparoscopic 
video with known ground truth data for camera motion. A 3D rendition of the virtual world is 
shown in (a) and an example stereo pair taken from the virtual cameras is shown in (b). 

to provide realistic image rendition. The use of a single planar model is not restrictive 
or degenerate as the proposed methods can be applied to more complex models.   

In addition to synthetic simulations, the proposed technique has also been applied 
to real MIS videos. Since the ground truth data for the in vivo data is not available, 
qualitative analysis by forward tracking the motion and then reversing the video 
sequence is used to assess the internal consistency of the algorithm.  

4   Results 

In Fig. 4, the results of using the proposed technique to estimate the movement of the 
stereo-laparoscope over 176 frames of simulated video are provided. The stereo-
laparoscope was moved by 1.5cm, 2cm and 0cm along the X, Y and Z axis 
respectively. Since no prior knowledge of the environment is taken, the initial 
estimations of feature positions have a large uncertainty.  The uncertainty reduces as 
the stereoscope moves but creates a lag in the estimated movement.  This is evident in 
the movement along the X axis.  Small movement of around 1mm in the Z axis is a 
result of the narrow baseline of the stereoscope. 

A potential problem with using a constant velocity motion models is the issue of 
dealing with sudden changes in direction.  However, the results show the algorithm is 
robust to changes in direction. It can be shown that 87.7% of the recovered movement 
lies within three standard deviations of the ground truth, this represents a confidence 
interval of 99%.   
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Fig. 4. Simulation based analysis of camera motion estimation. The graphs shown in (a-c) 
illustrate the recovered stereoscope movement in the X, Y and Z axes, respectively against  the 
ground truth. The solid black line shows the estimated motion with the grey bars indicating the 
uncertainty associated with the estimate. The dotted line displays the ground truth motion. 

Camera 

Environment 
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For in vivo analysis, Fig. 5 shows example images from the left and right channels of 
the stereoscope, whereas Fig. 6 illustrates the recovered trajectory paths of the camera 
along the X, Y and Z axes in the world coordinate system. The original video footage 
is 79 frames and the reversed video is 79 frames long. It is evident from the graphs 
that the camera tracking closes the loop by returning the device close to its starting 
position. Finally, the SLAM map acquired from the in vivo sequence is shown in  
Fig. 7, along with an example image with selected features with their corresponding 
uncertainties.  The appearance of features alters as the stereoscope and light source 
move.  Feature matching is made more robust by using active search with the use of 
normalized sum-of-squared difference correlation to reduce data association errors. 

 

 

Fig. 5. Left (top) and right (bottom) stereo images taken from an in vivo stereo-laparoscope 
sequence that involves a change of camera viewing position and orientation  

 

Fig. 6. In vivo analysis of the proposed techniques where the graphs show the recovered 
stereoscope movement along the X, Y and Z axes. Light grey lines represent the recovered 
motion in the forward sequence whereas the dark grey lines illustrate the recovered motion in 
the reverse direction. 

 

Fig. 7. Typical features selected in the left stereo image plane and the corresponding landmarks 
projected onto 3D coordinate system by using information built into the SLAM map 
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5   Discussion and Conclusions 

In this paper, we have developed a technique to estimate the movement of the stereo-
laparoscope during MIS and build a map of the anatomical structure. The method has 
been validated with a simulated data set using real MIS textures, as well as in vivo 
MIS video sequences. The results indicate the strength of the proposed algorithm 
under the complex reflectance properties of the scene. Accuracy can be further 
improved by incorporating information from the remaining stereo image into the 
measurement model, and directly cater for tissue deformation in the SLAM paradigm.  
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