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Abstract

The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest
in minimally-invasive treatment of structural heart disease. In order to calculate the needed transformation between
both imaging systems, we employ a discriminative learning (DL) based approach to localize the TEE transducer in X-ray
images. The successful application of DL methods is strongly dependent on the available training data, which entails
three challenges: 1) the transducer can move with six degrees of freedom meaning it requires a large number of images
to represent its appearance, 2) manual labeling is time consuming, and 3) manual labeling has inherent errors.

This paper proposes to generate the required training data automatically from a single volumetric image of the
transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences
in feature space density and correct covariate shift by instance weighting. Two approaches for instance weighting,
probabilistic classification and Kullback-Leibler importance estimation (KLIEP), are evaluated for different stages of
the proposed DL pipeline. An analysis on more than 1900 images reveals that our approach reduces detection failures
from 7.3% in cross validation on the test set to zero and improves the localization error from 1.5 to 0.8 mm. Due to the
automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device
with minimal efforts.
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1. Introduction

Catheter-based procedures such as trans-aortic valve
implantation (TAVI) or paravalvular leak closure are gain-
ing increasing importance for the treatment of structural
heart disease. The inherent challenge for the cardiac inter-
ventionalist is to infer the exact position of the catheter rel-
ative to the tissue from the available imaging information.
X-ray fluoroscopy is the dominant imaging modality for
these interventions, increasingly supported by 3D trans-
esophageal echography (TEE) (Gao et al., 2012). Both
modalities show complementary information, but in clini-
cal practice they are controlled and displayed completely
independently from each other.

Recently, image fusion has been proposed to combine
both modalities and to provide the cardiac interventional-
ist with a better overview of the in situ conditions. The co-
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registration can be accomplished by means of electromag-
netic (EM) tracking (Jain et al., 2009), but this approach
requires EM tracking hardware to be attached to the trans-
ducer and is sensitive to EM field distortions. In Ma et al.
(2010), authors present a feasibility study with a robotic
arm for tracking a trans-thoracic echo probe. Apart from
the difficulties of extending this system to TEE probes, the
robotic hardware requirements severely limit the practical
applicability of this approach. Alternatively, the pose of
the transducer can be estimated from its appearance in the
X-ray images, either directly (Gao et al., 2012; Mountney
et al., 2012) or supported by fiducial markers attached to
the probe head (Lang et al., 2012). Since the former ap-
proach does not require additional hardware, it is advan-
tageous for integration into the clinical workflow, albeit
more challenging to implement.

While 2D-3D registration (Gao et al., 2012) yields ac-
curate results, it has a limited capture range of < 10 mm,
requiring a manual initialization every time a new flu-
oroscopy sequence is acquired. Discriminative learning
(DL) (Mountney et al., 2012) can locate the TEE probe
everywhere in the image, but its performance is strongly
dependent on quantity and quality of the available training
data. In the medical domain, data is generally difficult to
acquire, and the required manual labeling is an extremely
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Figure 1: 3D visualization of the processed C-arm CT volume of an
X7-2t 3D TEE transducer (Philips, The Netherlands).

tedious and time-consuming task. Moreover, trained op-
erators cannot reproducibly annotate images with perfect
accuracy, and every variation in ground truth will decrease
the performance of the resulting DL system.

In this paper, we propose a novel approach for train-
ing a DL system based on in silico training data that can
be generated automatically in large quantities with per-
fectly accurate labels. Since synthetic image generation
cannot faithfully model all aspects of in vivo fluoroscopy
data, the DL system must be adapted. For this purpose
we employ unsupervised domain adaptation, a technique
which has been widely used in speech processing and has
recently gained attention in the computer vision commu-
nity (Margolis, 2011; Beijbom, 2012). In particular, we
show how unlabeled data from the target domain (i.e. in
vivo images) can be used to improve the performance of
object localization beyond what is achievable with semi-
supervised learning (Zhu, 2008). We apply our approach
to the estimation of in-plane parameters of a TEE probe in
fluoroscopy images, i.e. 2D position, in-plane orientation,
and scale.

This article is an extended version of Heimann et al.
(2013); it explains the methodology in more detail and
adds a number of new experiments to the domain adap-
tation. While based on the same image data, this new
version uses updated, more accurate annotations for the
in silico images, which leads to slightly different results in
the evaluation. We start with presenting the basic learn-
ing method in the next section and explain our adaptation
approach afterwards.

2. Learning from Synthetic Data

2.1. Generation of in silico Images

The synthetic training data is based on digitally re-
constructed radiographs, which approximate X-ray images
from computed tomography (CT) volumes. The source is
a high-resolution (0.18 mm/voxel) isotropic C-arm CT of
the TEE transducer, which was aligned to the image axes
and cropped to contain only the probe head. A binary
mask of the transducer was prepared and multiplied with
the original volume to remove streak artifacts in the sur-
rounding air. Figure 1 shows the final transducer volume
in three-plane view and volume visualization.
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Figure 2: Examples for different transfer curves used for generating
in silico images.

For each synthetic image, we set up a virtual scene
that represents a realistic C-arm geometry. The camera is
located 120 cm away from the image plane and features a
view angle between 6.5 and 11 degrees, simulating different
zoom modes of the C-arm. The 3D position and three
Euler angles of the virtual transducer are randomized with
the constraints that a) the probe is located at a distance
between 33 and 47 cm away from the image plane, b) the
projected probe is completely inside the image frame, and
c) the probe head is oriented in inferior direction. The
flexible tube to which the probe is attached is modeled by a
3D spline originating from a random position at the upper
image boundary. Along this spline, a collection of rings is
positioned in regular pattern. This is consistent with in
vivo images captured during structural heart procedures.

2D projections are generated using a composite ray-
caster, i.e. every pixel is assigned the sum of all val-
ues along the respective ray through the volume. Key to
generating realistic-looking images is the transfer function
used to calculate the opacities along the ray. Based on
the appearance of in vivo images, we chose an exponential
transfer function with randomized parameters in order to
generate sequences with slightly varying appearance and
contrast. A gray value x > 0 in the TEE volume maps to
opacity α(x) as follows:

α(x) = c0

(
exp

(
x

c1

)
− 1

)
/

(
exp

(
7500

c1

)
− 1

)
(1)

with c0 ∈ [0.08, 0.12] setting the opacity for gray value
7500 and c1 ∈ [2200, 3800] setting the contrast as random-
ized parameters. Figure 2 shows some example curves for
different values of c0, c1.

As background, we used 12 cardiac fluoroscopy sequen-
ces without transducer and combined them with the gener-
ated ray-caster images by additive blending. Annotations
were created automatically by storing the 2D position of
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Figure 3: A selection of generated in silico images with automatic annotations (top row) and in vivo fluoroscopy images (bottom row).

a fixed point in the center of the transducer together with
the respective Euler angles and the probe scale. Since the
apparent size in the projected 2D image varies with the
rotation angles, scale is measured as the width of upper-
most, circular part of the transducer which connects to the
flexible tube. Figure 3 gives an impression of the look of
the generated images compared to in vivo data.

2.2. Transducer Localization by Discriminative Learning

Following the marginal space learning approach (Zheng
et al., 2008), transducer localization is performed in several
stages by a pipeline of three discriminative classifiers. The
first classifier Φ employs Haar-like features xH (Viola and
Jones, 2004) to determine the 2D position of the probe in
images rescaled to 1 mm isotropic pixel spacing. All pixels
closer than 1 mm to the reference annotation are labeled
as y = Y +, all others as y = Y −. During detection, the
50 candidates with the highest classifier output p̂Φ(y =
Y +|xH) are passed on to the in-plane orientation detector
Θ.

Θ is based on a 4×4 grid of steerable features xS (Zheng
et al., 2008) calculated at 0.25 mm isotropic resolution.
Possible angles of the transducer are discretized into 6◦

steps, and all correctly positioned samples deviating < 4◦

from the annotated angle are labeled as Y +. For test im-
ages, the 50 candidates with the highest p̂Θ(y = Y +|xS)
are passed on to scale detector Ψ.

Ψ is again based on steerable features xS with 0.25 mm
spacing, but uses a much finer 32× 32 grid. The observed
TEE scales of 7.5–11 mm are discretized into a set of 8
hypotheses, corresponding to feature window sizes from
30–44 mm. Lastly, the 50 highest-ranked candidates are

combined by weighted averaging according to their respec-
tive p̂Ψ(y = Y +|xS) and produce the final output. All
classifiers of the pipeline are implemented as probabilis-
tic boosting trees (PBTs) (Tu, 2005), which combine high
computational efficiency with competitive accuracy.

Some parameters of this pipeline, like the grid sizes for
steerable filters, have been optimized empirically for this
specific application. Others, as the number of candidates
passed on to the next level or the image resolution at dif-
ferent stages, are not that critical for the performance of
the system and have been set according to our experience
with other applications.

3. Transfer Learning

A fundamental assumption in machine learning is that
training and test data stem from the same distribution.
In our approach, however, the training data originates
from the in silico source domain S, while the test data
comes from the in vivo target domain T . Consequently,
the above assumption may not hold, in which case the clas-
sifiers would work along non-optimal decision boundaries.

Formally, let x represent a feature vector for a sam-
ple and y ∈ [Y +, Y −] its label, then the joint probability
distribution P (y, x) should be identical for source and tar-
get domain. In our case, we know that the marginalized
label probabilities are equal, i.e. PS(y) = PT (y), since
images from both domains show exactly one transducer.
Moreover, given a certain feature vector, the question if
the corresponding image region shows a probe can also
be decided without knowing its domain, which makes it
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reasonably safe to assume that PS(y|x) = PT (y|x). How-
ever, the distribution of feature vectors in both domains
is probably different, i.e. PS(x) 6= PT (x), which leads to a
situation called covariate shift (Shimodaira, 2000).

The effect of covariate shift on a classifier is illustrated
intelligibly by Yamada et al. (2012), among others: Clas-
sifiers typically model class boundaries by a number of pa-
rameters and, during training, select optimal values for
these parameters based on some error minimization in
the source domain. In order to prevent over-fitting, the
number of parameters and thus the possibilities for class
boundaries are limited, which means that the learned model
performs better in denser regions of the training data. If
the target domain is only sampled sparsely during training,
considerable errors can occur when applying the classifier
there.

In machine learning, approaches to adopt existing clas-
sifiers to new tasks or new domains are broadly labeled as
transfer learning. The covariate shift problem encountered
in our case falls into the category of transductive transfer
learning or domain adaptation (Pan and Yang, 2010). In
the following, we present the general idea of the approach
and how we can use it for object localization.

3.1. Learning under Covariate Shift

As described by Shimodaira (2000), a classifier can be
adapted to different training and test distributions by min-
imizing its loss function. This is accomplished by assigning
each training sample an instance weight according to the
ratio of joint probabilities of target and source domain.
Under covariate shift, this ratio simplifies to:

PT (y, x)

PS(y, x)
=
PT (x)PT (y|x)

PS(x)PS(y|x)
=
PT (x)

PS(x)
(2)

Conveniently, this formulation does not include any labels
y, i.e. no annotations are required for the target domain
in order to adapt the classifier.

The challenge lies in estimating the required density
ratio (Sugiyama et al., 2010b): Estimating a continuous
density function from samples is non-trivial in itself, but
dividing by an estimated density can magnify the occur-
ring errors. For this reason, a number of approaches to
estimate the required density ratio directly have been de-
veloped (Sugiyama et al., 2010b). One of these is the
probabilistic classification approach, in which a classifier
is trained to differentiate between samples xS ∈ S and
xT ∈ T . Sugiyama et al. (2010b) present logistic regres-
sion (Hastie et al., 2009) as a suitable classifier for this
task. During training, all xS are assigned to y = 1 and
all xT to y = 0. The density ratio can then be estimated
using classifier output p̂ by:

PT (x)

PS(x)
=

1

p̂(y = 1|x)
− 1 (3)

According to a theoretical analysis in Kanamori et al.
(2010), this approach is optimal in case that the joint prob-
abilities of source and target domain are members of the

exponential family. In practice, this is rarely the case, and
the so-called ratio matching approach should deliver better
results (Sugiyama et al., 2010b).

The core idea of ratio matching is to construct a para-
metric density ratio model and match this to the true den-
sity ratio. Since the latter is not available, a divergence
method is used to measure the error of the model. A recent
method following this approach is the Kullback-Leibler im-
portance estimation procedure (KLIEP) (Sugiyama et al.,
2008). It can be used with a Gaussian kernel model for
the density ratio and determine the optimal variance for
the kernels during the estimation. For a mathematical
derivation of the method, we refer the reader to Sugiyama
et al. (2008). The authors also provide Matlab code for
the algorithm2.

3.2. Instance Weighting for Object Localization

With logistic regression and KLIEP, we have two viable
approaches to estimate weights for training our classifiers
Φ, Θ, and Ψ. However, while instance weighting has al-
ready been employed for a number of different tasks (Mar-
golis, 2011), its application to object localization raises
two important questions: Which samples should be used
to estimate the feature density ratio, and should positive
and negative samples be treated equally for weighting?

Using all available samples would require extracting
feature vectors for every pixel in every available image
multiple times (for different orientation and scale hypothe-
ses). Not only would this result in the impractical amount
of 1012 feature vectors, but it would also lead to highly
unbalanced class labels Y + and Y −. Moreover, as we use
a relatively small number of background sequences to gen-
erate the in silico data, features for Y − are repeating in
the source domain. In summary, this would lead to back-
ground samples Y − completely dominating the density ra-
tio estimation, although it is the appearance of the trans-
ducer (labels Y +) which should ideally drive the domain
adaptation.

We propose a two-step approach to solve this problem.
In order to generate a subset of samples, we employ a DL
pipeline trained on in silico data S1 to localize the trans-
ducer in another set of synthetic images S2 and unlabeled
in vivo data U . As even an average DL system will detect
the transducer with reasonable accuracy on the majority
of images, this step effectively reverses the class imbalance
in favor of positive samples Y +. Feature vectors for the
generated samples are normalized to zero mean and unit
variance over the entire set. They are used as input to
either the logistic regression or KLIEP. As the quality of
the density ratio estimation may vary, we relax instance
weight w as suggested by Shimodaira (2000):

w(x) =

(
PT (x)

PS(x)

)c

(4)

2http://sugiyama-www.cs.titech.ac.jp/ sugi/software/KLIEP/
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Figure 4: Overview of the proposed approach for domain adaptation.
In order to bias instance weighting towards positive samples, a prob-
abilistic boosting tree (PBT) classifier is trained on synthetic image
set S1. Density ratio estimation (DRE) is then used to calculate
instance weights for S2. Finally, the domain adapted PBT classi-
fier is trained with weighted positive samples and standard negative
samples of S2.

with c ∈ [0, 1] as regularization parameter. In this study,
we set c = 0.5.

This procedure provides instance weights for all gen-
erated samples of S2, which are assigned as weights to
the corresponding synthetic images. Ideally, these weights
should be high for images with similar appearance to in
vivo data, and low for less similar ones. Please note that,
when the domain adapted classifier is trained on S2, it uses
the ground truth annotations for Y + and not the previ-
ously generated samples. In addition, since the instance
weights were generated with a bias on positive samples,
they are only used for samples Y +, while background sam-
ples Y − remain unweighted. Figure 4 summarizes this ap-
proach graphically.

4. Experiments and Results

4.1. Image Data

Image data originates from two clinical centers and was
mostly acquired during standard TAVI procedures. Both
centers used an Artis Zeego C-arm system (Siemens AG,
Germany) for acquisition of fluoroscopy and an X7-2t 3D
transducer (Philips, The Netherlands) for acquisition of
TEE. In order to estimate the physical resolution of each
fluoroscopy sequence, the pixel spacing of the fluoroscopic
detector was divided by the radiologic magnification fac-
tor, which accounts for the projection geometry of the C-
arm. In order to prevent problems with local feature cal-
culation, we excluded approx. 25% of all frames in which
the transducer was too close to the image boundaries. In
prospective clinical application, the X-ray window could
always be chosen to include the probe entirely, i.e. this
data exclusion does not limit the applicability of the pro-
posed approach.

In the end, we used 68 sequences from 22 patients for
our study, comprising 6280 frames in total. For 37 se-
quences comprising 1913 frames, the probe head was an-
notated manually by two engineering students (who dis-
tributed the complete workload between themselves). We
denote this set of annotated in vivo images as TL, while
the remaining unlabeled 4367 frames are denoted as TU .
Finally, using the method from Sec. 2.1, we generated two
sets S1, S2 containing 10,000 in silico images each. These

Table 1: Mean errors for manual annotations on 220 frames.

Position Orientation Scale
Error Error Error

Student 1 0.4±0.2 mm 0.7±0.5◦ 0.5±0.2 %
Student 2 0.4±0.2 mm 0.7±0.6◦ 8.5±0.2 %

Table 2: Area-under-curve values and changes relative to baseline
for different instance weights (IW) on the position detector.

System AUC Change to BL

Baseline 88.8
IW LR70 95.2 +7.2 %
IW LR10 86.3 -2.9 %
IW KLIEP70 80.7 -9.1 %
IW KLIEP10 79.7 -10.2 %

two synthetic image sets are required for the proposed do-
main adaptation approach, as described in Sec. 3.2.

4.2. Manual Annotation

Before generating synthetic image sets S1, S2, we con-
ducted a small annotation study in which the two stu-
dents annotated 220 in silico frames independent from
each other. For each frame, the students had to place
an oriented rectangle over the probe head according to a
fixed protocol. One side of the rectangle marks the prox-
imal and one side the distal end of the probe head, while
the lengths of these sides represent the width of the probe
shaft.

As described in Sec. 2.1, we require a fixed 3D position
in the probe volume that can be projected to DRRs for
the automatic labeling of 2D location. We selected this 3D
position as the point that minimized the average error to
the center of the manually annotated rectangles in the 220
frames of the annotation study. Finally, we compared the
annotations of both students to the thus generated ground
truth (see Table 1). As can be seen from the results, man-
ual annotation is reproducible to a satisfying level, except
that Student 2 consistently annotated a larger width of
the probe head. We went over the protocol again with
him and made sure he annotated the width correctly. Af-
ter this, both students proceeded with the annotation of
the in vivo images.

4.3. Logistic Regression vs. KLIEP

In Sec. 3.1, we presented two different approaches for
generating instance weights: Logistic regression (LR) and
KLIEP. In order to determine which method is better
suited for our application, we evaluated the performance of
different weighting schemes on the position detector Φ. An
unweighted detector Φ0 trained on S2 serves as baseline for
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Figure 5: True positive rate (TPR) vs. average number of false
positives (FPs) for different instance weights on the position detector.

the experiment. It was set up as three-level cascade with
10, 20, and 40 Haar-like features per level, respectively.

For the domain-adapted classifiers, a full PBT pipeline
(Φ⇒ Θ⇒ Ψ) was trained on S1 and used to generate TEE
probe samples from S2 and TU , as described in Sec. 3.2.
Four different sets of instance weights (IW) were estimated
from these samples:

• IW LR70: based on the full feature set and logistic
regression

• IW LR10: based the 10 most discriminating features
of the first cascade level

• IW KLIEP70: based the full feature set and KLIEP

• IW KLIEP10: based on the 10 most discriminating
features

The four domain-adapted classifiers Φi
A, i ∈ [1 . . . 4] re-

sulting from training on S2 with the respective positive
weights were evaluated on TL. All detected candidates
with a position error < 1 mm were counted as true posi-
tives. Plotting these counts against the average number of
false positives results in the curves shown in Fig. 5. The
corresponding areas under the curve (AUCs) are given in
Table 2. As can be seen, the only weighting approach
that improves detection results is logistic regression on the
full feature set. Some examples for samples that obtained
very high and low weights with this method are shown
in Fig. 6. Reducing the number of features for density
estimation deteriorates the performance of the resulting
classifier. Weights determined by KLIEP yield the worst
performance for our application.

4.4. Selecting the Stages for Domain Adaptation

According to the outcome of the weighting scheme eval-
uation, logistic regression on the full feature set was chosen

Figure 6: A selection of in silico training samples that received high
instance weights (top) and low instance weights (bottom) for the
position detector. Automatic annotations are visualized as yellow
overlays. All weights were estimated by logistic regression on the
full feature set.
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Figure 7: True positive rate (TPR) vs. average number of false
positives (FPs) for detection pipelines employing domain adaptation
at different stages.

to estimate instance weights. The second set of experi-
ments was conducted to analyze in how far the encour-
aging results reached for domain adaptation of the posi-
tion detector carry over to the other stages of the detector
pipeline. As baseline system (Φ0 ⇒ Θ0 ⇒ Ψ0), we trained
the complete pipeline presented in Sec. 2.2 on S2. Ori-
entation detector Θ0 was set up as three-level tree with
105 steerable features in total, and scale detector Ψ0 as
three-level tree with 190 steerable features.

For each image of S2, the same TEE probe sample
as in the previous section was used to calculate instance
weights for both detectors, using their respective steer-
able feature sets. These weights were used as input for
the domain-adapted classifiers ΘA and ΨA. In order to se-
lect the stages for domain adaptation (DA), three different
pipelines were assembled:
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Table 3: Area-under-curve values for detection pipelines employing
domain adaptation at different stages. All changes are given relative
to baseline.

System AUC Change to BL

Baseline 86.8
DA Pos 90.2 +3.9 %
DA Pos+Ori 90.3 +4.0 %
DA Pos+Ori+Scale 86.4 -0.4 %

• DA Pos: uses instance weighting just for the position
detector (ΦA ⇒ Θ0 ⇒ Ψ0)

• DA Pos+Ori: uses instance weighting for position
and orientation detectors (ΦA ⇒ ΘA ⇒ Ψ0)

• DA Pos+Ori+Scale: uses instance weighting for all
stages (ΦA ⇒ ΘA ⇒ ΨA)

As before, all systems were evaluated on image set TL.
For a detailed analysis of each system, we looked at the
detected candidates before the final averaging step and
counted a true positive if one of the candidates had a po-
sition error < 1 mm, an orientation error < 4◦, and a scale
error < 0.75 mm (scale measured as width of the tube).
These thresholds were chosen so that for each parameter,
the maximum allowable deviation will result in an average
movement of 1 mm, calculated over the area of the feature
window.

Figure 7 shows the resulting performance curves and
Table 3 the corresponding areas under the curve. As can
be seen, domain adaptation on the position detector has
the largest impact with an increase of 3.9% AUC relative
to the baseline system. Domain adaptation on the orien-
tation detector brings only slight additional improvements
(+4.0% AUC relative to baseline), while trying to adapt
the scale detector actually deteriorates the results (-0.4%
AUC relative to baseline).

4.5. Evaluation of Robustness and Accuracy

Following the results of the previous section, the sys-
tem with instance weighting for position and orientation
detectors was selected for the final evaluation of robustness
and accuracy. In order to assess its performance relative
to the state of the art, it was compared to a number of
alternative systems:

• in vivo Reference: trained directly on TL without
any synthetic data (using three-fold cross-validation
for evaluation)

• in silico Baseline (from Sec. 4.4): trained exclusively
on synthetic images S2

• Self Training: Following a popular approach in semi-
supervised learning (Zhu, 2008), the samples drawn
from TU (as described in Sec. 3.2) are used to enlarge

the synthetic training set and to generate another
unweighted system from S2 ∪ TU .

• Train on Test Data: To evaluate the commonly best
case in machine learning, this system is trained di-
rectly on the test set TL.

For each system, the final output of the pipeline (af-
ter candidates are merged) was compared to the reference
labels. In case the output was located outside the anno-
tated probe area (circles in Figs. 3 and 6), the localization
was counted as failure. For successful detections, average
position, orientation and scale errors were computed. The
complete results are displayed in Table 4.

The entire detection pipeline runs in less than 25 ms
per frame on an Intel i7 Quadcore CPU with 2.2 Ghz. This
time holds true for all tested systems, as the differences lie
only in the respective training procedures. During mini-
mally invasive interventions, fluoroscopy sequences are typ-
ically acquired with 7 to 15 frames per second. Therefore,
the presented approach is completely real-time capable.

4.6. Analysis of Feature Sets

The unexpectedly low performance of the pipeline “DA
Pos+Ori+Scale” prompted us to take a closer look at the
different feature sets that the instance weights are based
on. Each individual feature (Haar-like or steerable) evalu-
ates a certain region of the complete feature window. Dur-
ing training of a PBT, the features which best discriminate
between positive and negative samples are included in the
respective stage of the tree or cascade (Tu, 2005). Since
sample weights are included in the calculation of the dis-
criminative power, it is possible that the domain-adapted
classifiers use different feature sets than the baseline clas-
sifiers. Figure 8 visualizes the selected features for po-
sition, orientation, and scale classifiers before and after
domain adaptation. To quantify the differences, we cal-
culated the Dice coefficient for overlap of corresponding
feature sets before and after domain adaptation. These
values are listed in Table 5.

Since the overlap is less than 50% for all three de-
tectors, we decided to analyze the sensitivity of instance
weights with regard to different feature sets. For this, we
re-calculated the respective instance weights based on the
feature sets after domain adaptation and calculated their
correlation to the original weights. Due to the distinctively
non-Gaussian distribution of weights, Spearman’s correla-
tion coefficient ρ was used for this purpose. Results are
again shown in Table 5.

5. Discussion

Our results clearly demonstrate the dependency of DL
systems on the available training data. The reference sys-
tem in our experiments, although trained on the same do-
main as the test data, yields the worst overall results. The
in silico system can compensate the difference between
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Table 4: Mean errors with standard deviation for successful detections.

Failed Position Orientation Scale
Detections Error Error Error

in vivo Reference 7.34 % 1.5±2.5 mm 3.2±5.4◦ 3.8±3.0 %
in silico Baseline 3.19 % 0.9±0.6 mm 1.7±1.3◦ 3.1±2.0 %
Self Training 0.42 % 0.8±0.9 mm 1.5±1.3◦ 4.3±3.0 %
Train on Test Data 0.37 % 0.7±0.8 mm 1.5±1.3◦ 2.6±2.5 %
Domain Adaptation 0.00 % 0.8±0.5 mm 1.4±1.1◦ 3.2±2.3 %

Figure 8: Visualization of feature sets for position detector (left col-
umn), orientation detector (middle column), and scale detector (right
column). The first row shows features for the baseline versions in red,
the second row features for the domain-adapted versions in blue.
The shades of each color from black to white indicate the number
of features relying on the respective areas. The last row visualizes
the differences between both feature sets (with white and magenta
encoding overlapping regions).

source and target domain by an eight times larger train-
ing set with perfectly placed labels and reduces the num-
ber of failed detections to less than a half, while at the
same time improving on all errors. Regarding the combi-
nation of synthetic data with unlabeled in vivo images, self
training is very straight-forward to implement and yields
excellent results: Errors are comparable to the in silico
system (slight improvements for position and orientation
with approx. 40% worse scale estimation), but the misde-
tections are reduced considerably further down to 6% of
the reference system.

Given these strong results and the problems of replicat-
ing the promising results of the instance-weighted position
detector at later stages of the pipeline (especially scale),
we were surprised that domain adaptation was still able

Table 5: Change of feature sets by domain adaptation (Dice overlap)
and influence on instance weights (Spearman’s ρ).

Detector Dice Spearman’s
overlap correlation

Position 10.5 % 88.8 %
Orientation 43.3 % 86.8 %
Scale 14.4 % 54.1 %

to improve upon these numbers. Reducing misdetections
by an additional half percent might not seem like much,
but in general, eliminating failures becomes more difficult
with higher base performance, and domain adaptation re-
duces the number of failures to zero in this study. Its
success is based on up-weighting training samples that ap-
pear similarly in the target domain and down-weighting
less common samples with e.g. very high contrast or large
rotations (see Fig. 6). Obviously, generating in silico data
with more realistic parameters from the start would have
a similar effect, but – as for most applications – the true
distribution of parameters in real-world data is not known.

Since the largest difference between source and target
domain appears in the feature set of the position detector
(which has to cope with different orientations and scales),
this stage of the pipeline can benefit most from domain
adaptation. While the orientation detector still improves
with domain adaptation, instance weighting completely
failed for the scale detector. Based on the results from
Sec. 4.6, we believe this is due to the inherent feature se-
lection, which produces different feature sets for different
instance weights. While the position detector also changes
almost 90% of its original features after weighting, its new
feature set covers essentially the same area as before, which
leads to a high correlation of the corresponding weights.
The steerable features of the scale detector, however, cover
different image regions after weighting, and the resulting
weights correlate only mildly with the original values. In
future work, enforcing the same feature set for the domain-
adapted PBTs as for the original detectors will be an in-
teresting experiment.

Regarding the different methods we evaluated to esti-
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mate the required instance weights for domain adaptation
in Sec. 4.3, it seems like using a lower-dimensional subset
of features does not lead to usable weights. Both logis-
tic regression and KLIEP yielded worse results than no
weighting when only 10 features were used. While logis-
tic regression delivered convincing results with the full set
of 70 features, KLIEP improved only slightly and stayed
below the baseline. We suspect that 70 features are al-
ready too much for KLIEP to work reliably – as reported
in Sugiyama et al. (2010a), the standard KLIEP approach
performs poorly when the dimensionality of the data is
high.

The detection pipeline we presented in this work only
estimates the in-plane parameters of the TEE probe. For
an information fusion between TEE and fluoroscopy in the
final clinical application, out-of-plane parameters (two ad-
ditional rotations) are also required. These missing param-
eters can be estimated by subsequent 2D-3D registration
(Gao et al., 2012) or template-matching (Mountney et al.,
2012), which will be initialized with the values from the
presented pipeline. As such, the most important parame-
ter for the presented system is the robustness of detection.
In case the probe is misdetected on a frame, the subsequent
stage will not be able to recover from this error. Accuracy
is important mainly because a more accurate initialization
allows reducing the search range for the following stage,
which will result in faster run-time. According to initial
experiments using the template matching approach from
(Mountney et al., 2012), the obtained accuracy is sufficient
to allow for a real-time detection of the complete 3D pose.

6. Conclusions

In summary, we believe the combination of automat-
ically generated data and unlabeled real-world images to
be a highly promising approach for training DL systems.
It resolves the need for thousands of annotated training
samples, which is one of the main bottlenecks of machine
learning in the medical domain. Moreover, the ability to
create large quantities of training data for any X-ray im-
ageable device (e.g. implants or new transducers) within
hours offers unmatched flexibility.

The presented approach for TEE localization is ex-
tremely robust, highly accurate, and real-time capable,
properties which make it ideal for initializing subsequent
2D-3D registration (Gao et al., 2012) or template-matching
(Mountney et al., 2012) approaches. This combination will
allow to gain the complete 3D pose of the transducer fully
automatically, which will facilitate the interventional fu-
sion of TEE and fluoroscopy images (as exemplified in
Fig. 9) and hopefully contribute to making minimally-
invasive procedures for structural heart disease even safer.
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