
  

  

Abstract— Navigation during Minimally Invasive Surgery 

(MIS) has recognized difficulties due to limited field-of-view, 

off-axis visualization and loss of direct 3D vision. This can cause 

visual-spatial disorientation when exploring complex in vivo 

structures. In this paper, we present an approach to dynamic 

view expansion which builds a 3D textured model of the MIS 

environment to facilitate in vivo navigation. With the proposed 

technique, no prior knowledge of the environment is required 

and the model is built sequentially while the laparoscope is 

moved. The method is validated on simulated data with known 

ground truth. Its potential clinical value is also demonstrated 

with in vivo experiments.  

I. INTRODUCTION 

INIMALLY invasive surgery is becoming a preferred 

choice of operation for many surgical procedures due 

to reduced hospitalisation and patient trauma. Technically, 

the method has introduced significant challenges to surgeons 

as they are required to perform the procedures in confined 

space with elongated tools without direct 3D vision. This is 

exacerbated by a lack of tactile feedback and the fulcrum 

effect. Due to the limited distance between the laparoscope 

camera and the target anatomy, the field-of-view of the 

surgical site is usually limited. This results in restricted 

vision which can affect the visual-spatial orientation of the 

surgeon and the awareness of peripheral events. 

A potential solution to expanding the surgeon’s field-of-

view is dynamic view expansion [1]. To this end, a fisheye 

lens is a simple hardware solution but this can distort the 

image and change the appearance of in vivo structures. 

Although distortion can be limited by using rectilinear 

lenses, the capabilities of an optical solution are limited by 

the physical confines of the workspace and instrument 

design. In [2], the authors have used ultrasound to aid 

navigation through augmented reality. Preoperative CT is 

registered to the ultrasound data, which is tracked using an 

electromagnetic tracker. Without introducing additional 

hardware, image based dynamic view expansion is proposed 

in [1], where optical flow is used to expand the view of a 

monocular endoscope for Natural Orifice Translumenal 

Endoscopic Surgery (NOTES). This approach does not 
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require the scene to be static; however, it relies on the use of 

a brightness constraint, which can be problematic in 

homogeneous regions. Direct image mosaicing by creating a 

large image from multiple local views has been used on 

images of the bladder [3], brain [4], and retina [5]. These 

techniques work well for planar geometries but the 

underlying assumption does not hold for many surgical sites. 

In [6], an image mosaicing approach is proposed which 

assumes a tubular structure. This approach requires prior 

knowledge of the structure of the scene. Despite these 

problems, image based approaches are attractive because 

they require no additional hardware. However, issues related 

to specular reflections, tissue deformation and the paucity of 

feature landmarks must be addressed.  

In this paper, we propose an image based approach for 

dynamic view expansion that requires no prior knowledge of 

the 3D structure. The method is based on using Simultaneous 

Localization And Mapping (SLAM) to generate a sparse 

probabilistic 3D map of the surgical site while tracking the 

position of the laparoscope relative to the map. The 

proposed method is sequential, real-time and capable of 

working with a limited number of features. Validation has 

been performed on both simulated data and clinical value is 

demonstrated with in-vivo procine experiments. 

II. METHODS 

A. Dynamic View Expansion 

The proposed method expands the effective field-of-view 

by incrementally creating a 3D model of the tissue as the 

laparoscope is navigated around the surgical scene. The 3D 

model is used to augment the current view from the 

laparoscope with information from outside the current field–

of-view. The model is projected onto a virtual camera 

situated in the same location as the laparoscope, thus 

creating a larger field-of-view than the physical laparoscope 

itself. The method builds a 3D model of the tissue in situ and 

recovers the position of the laparoscope relative to the tissue. 

It has been shown that SLAM can be used to simultaneously 

recover the geometrical map of tissue and the position of the 

laparoscope in MIS[7, 8].  
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Fig. 1 A schematic illustration of the SLAM system used for dynamic view 

expansion, in which the key steps involved are highlighted.   

 

B. Simultaneous Localization And Mapping (SLAM)  

The SLAM approach used in this paper is based on [7-9], 

the major steps are outlined in Fig. 1. The 3D map and the 

position and orientation of the camera are held in a state 

vector. This vector, along with a covariance matrix, forms 

the components of an Extended Kalman Filter (EKF) which 

is used to model the non linear dynamic system. The SLAM 

EKF consists of four major steps: 

Predict: In the prediction step, the position of the camera 

is estimated for the new frame based on a constant velocity, 

constant acceleration motion model with added Gaussian 

noise assuming smooth motion trajectory. The positions of 

the features are estimated in the camera coordinate system 

relative to the newly estimated camera position. 

Measure: The positions of the features are projected onto 

the image plane based on the prediction step. The features 

are measured by actively searching for the best feature 

match. 

Update: By using the predicted state and the measured 

state, the Kalman gain is computed. Subsequently, the state 

and covariance estimation are updated. 

New features: New features are added to the map when 

the total number of visible features falls below a 

predetermined threshold. New features are added by 

matching salient regions in the left and right stereo images 

and epi-polar geometry is used to compute their 3D position 

relative to the camera. Specular highlights are detected with 

thresholding and features close to specular highlights are 

ignored. Features close to the edge of the image are added 

first to create a larger map of the environment. 

C.  Model Generation  

The map created by using the SLAM algorithm is a sparse 

set of 3D points. These points are interpolated to create a 3D 

model of the tissue. The solid tissue surface model is 

generated by performing Delaunay triangulation on the 

SLAM map. This meshing approach provides an estimate for 

every 3D point within the observed and mapped 

environment. An example of a surface model is shown in 

Fig. 2.  

D. Texture Selection 

After model generation, it is textured with images taken 

from the laparoscopic camera to recreate a realistic 

representation of the environment. A single texture is 

selected for each triangular face on the model. In MIS, a 

point light source is attached to the laparoscope, which leads 

to changes in the surface brightness of the tissue as the 

laparoscope is navigated. This effect is inevitable when 

creating a composite image as both spatial and temporal  

information is combined. In practice, visually inconsistent 

texturing and the artifacts can be reduced by using a small 

set of images to texture the model. This set is chosen by 

searching for images that can texture the largest number of 

faces. Areas close to the edge of the image are ignored as 

vignetting can cause poor visual quality. In this study, image 

rectification is performed before the textures are applied to 

the mesh in order to remove possible distortions. This texture 

selection process effectively reduces visual artifacts in the 

model appearance; however seams are visible where adjacent 

faces in the model are textured with different images as 

shown in Fig. 2(c). Seams are removed by blending adjacent 

textures described below.  

E. Poisson Blending 

For planar surfaces, seams between adjacent textures can 

be removed by simple blending. In this study, however, it is 

not applicable as the surfaces are not planar and may assume 

arbitrary topology. Approaches such as multiband blending 

are not straight forward to apply either as images may not 

have overlap faces.  

Previous studies have shown that the Poisson image 

editing [1, 10] can be used to reduce the effects of seams by 

locally adjusting the brightness values. It has been 

successfully used for dynamic view extension [1] in NOTES. 

With this approach, the new image is mapped onto the 

existing image by formulating it as a partial differential 

equation. The border on the new image is constrained to be 

equal to the intensities on the existing image by enforcing the 

Dirichlet boundary conditions [10]. The new texture is added 

to the existing texture with a one pixel overlap δΩ . A large 

sparse positive definite system of linear equations is solved 

iteratively in the RGB channels with a conjugate gradient 

method with successive over relaxation as a pre-condition: 
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where iN  is the set of pixels neighbouring pixel i , if  are 

the pixel values of the mosaic before updating, '

if  are the 

unknown pixel values of the updated mosaic and '

ig  are the 

pixel values of the new texture. Pairwise face blending is 

performed. The existing image is taken to be the image 

which covers the larger number of faces. An affine 

transformation is applied to the new image to align and scale 

it into the same coordinate system as the existing image 

before blending is performed. This generates a seamless 

textured model of the tissue.  



  

 
Fig. 2 (a) Delaunay triangulation of the points in a SLAM map with current 

camera position shown in green. (b) Selected textures for each triangle (c) 

the textured 3D tissue model before seam removal. 

 

F. Dynamic View Expansion 

In essence, view expansion is the augmentation of the video 

images from the laparoscope with a textured model. The 

SLAM algorithm provides the position of the laparoscope, 

enabling the model to be projected into the image plane. The 

expanded view is achieved by extending this image plane, 

and thus the effective field-of-view. Direct combination of 

the model and laparoscopic images can cause a seam around 

the edge of the image as shown in Fig. 4(c). The Poisson 

image editing operation as described above is thus applied to 

remove this seam by blending the model into the image from 

the laparoscope. The image from the laparoscope is not 

adjusted or changed in any way. The extended field-of-view 

is an approximation and can be considered as a navigational 

aid. 

III. RESULTS 

The proposed system has been quantitatively validated on 

simulated data with known ground truth. An image from a 

laparoscopic procedure showing the liver and part of the 

stomach was used to texture a 3D surface model. A virtual 

stereo laparoscope was navigated around the model to 

capture images of the texture mapped surface. This provided 

known ground truth for the camera’s position in the 

environment, enabling quantitative validation of the SLAM 

system. Results are shown in Fig. 3(a-c) for translation where 

the laparoscope is navigated left and right, up and down and 

finally away and towards the 3D surface. In this study, the 

average error was 0.4, 0.22 and 0.1 cm in the X, Y and Z 

axes. The corresponding standard deviation was 0.28, 0.22, 

0.09, respectively. This represents average errors of 2.3%, 

1.5% and 0.5% of the total movement in the X, Y and Z 

axes. These results demonstrate the accuracy of the system in 

recovering the laparoscope’s position, which is fundamental 

 
Fig. 3 Quantitative analysis of the camera motion. The SLAM estimated 

position is shown in green and the ground truth is shown in red for the X 

(top), Y (middle) and Z (bottom) axis. 

 

to dynamic view expansion. In general, the errors involved 

are relatively small. The largest errors are found when the 

laparoscope is changing direction, in which case the constant 

velocity motion model used in EKF no longer holds and 

motion is modeled with a Gaussian distribution. Small errors 

are introduced into the X and Y estimation when navigating 

along the Z axis away and towards the tissue model. These 

errors are due to the higher uncertainty in the Z position of 

the features resulting from the small baseline of the stereo 

cameras used. 

Figs. 3(d-f) show the laparoscope rotating around the X, Y 

and Z axes with average error of 1.34°, 0.8° and 0.295° and 

standard deviation of 1.57°, 0.75° and 0.32° respectively. 

This represents 2.23%, 1.33% and 0.49% of the total rotation 

in the X, Y and Z axes. Small errors occur when rotating 

around the optical axis (Z axis). This rotation causes 

significant changes in the appearance of the features. 

 

 

 
Fig. 4 A visual comparison of the effect of Poisson texture blending on in 

vivo data. (a) Textured model without blending. (b) Textured model with 

blending. (c) Current view augmented with textured model without 

blending. (d) Current view augmented with textured model with blending. 

 

 



  

 

 

The proposed technique has also been applied to in-vivo 

porcine data. Since the ground truth data for the in-vivo 

procedure is not available, only qualitative results are 

provided in Fig. 4, which shows a textured surface model 

before and after texture selection and blending. It is evident 

from Fig. 4(a) that seams are clearly visible on the model 

between textured facets from difference images. Fig. 4(b) 

shows the same surface model after texture selection and 

blending, illustrating the benefit of this approach in seam 

removal. Figs 4 (c) and (d) illustrate the augmentation of the 

model to the current image from the laparoscope and the 

resulting view expansion without and with blending.   

Further results are presented in Fig. 5 to demonstrate the 

clinical value of dynamic view expansion for in-vivo 

abdominal exploration during MIS. The current image from 

the laparoscope is highlighted in a white box. It is evident 

that the views derived from the proposed method are 

seamless. 

IV. CONCLUSION 

In this work, we have developed a technique for dynamic 

view expansion during MIS. It simultaneously builds a 3D 

model of the environment and tracks the position of the 

laparoscope. The method has been validated and applied to 

both simulated and in vivo data sets. The results have shown 

that the proposed technique achieves improved visual 

appearance. The application of Poisson blending further 

enhances the visual fidelity of the results. It is worth noting 

that accuracy can be further improved by directly 

incorporating tissue deformation in the SLAM framework. 

Future work will also include more sophisticated meshing of 

the SLAM map to cater for more complex environments. 
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Fig. 5 Five in-vivo examples of dynamic view expansion performed during an exploration of the abdomen. The current image from the endoscope is 

highlighted with a white dashed border. 
 


